Smart Antennas in Aerospace Applications
Workshop on Smart Antennas
April 22, NLR Amsterdam

Jaco Verpoorte, Pieter Jorna, Adriaan Hulzinga, Harmen Schippers
Overview

- **Smart Antennas in Aerospace Applications**

- **Example of Smart Antenna for military naval and aerospace applications**
 - null-steering antenna for satellite navigation

- **Example of Smart Antenna for civil aerospace application**
 - beam-steering antenna for satellite communication

- **Video of SATCOM antenna demonstration**
Overview

● **Smart Antennas in Aerospace Applications**

● **Example of Smart Antenna for military naval and aerospace applications**
 ● null-steering antenna for satellite navigation

● **Example of Smart Antenna for civil aerospace application**
 ● beam-steering antenna for satellite communication

● **Video of SATCOM antenna demonstration**
Smart Antennas in Aerospace Applications

- **Smart Antennas adapt to environment**
 - Direction of arrival (of signal)
 - tracking/beam steering: moving platform(s)
 - beam forming: control beam shape to comply with requirements/regulations
 - Multipath
 - only multipath or multipath in addition to direct link
 - Interference
 - weaker than signal (SATCOM)
 - or stronger than signal (SATNAV)
 - Vibrations
 - large antenna arrays (e.g. on wing of UAV)
 - compensation techniques (mechanical/electrical)

- .. in order to maximize the signal-to-noise-plus-interference ratio
Smart Antennas in Aerospace Applications

- **Smart Antennas: link with hardware and algorithms:**
 - Smart Skins
 - integration in aircraft skin (fuselage)
 - Smart materials
 - meta materials for miniature multi-frequency antennas
 (periodic structures with “artificial permittivity or permeability”)
 - Multi-frequency/Broadband antennas or Multi-function antennas
 - reduction of space
 - “Onboard” processing: intelligent antenna
 - e.g. in radar: knowledge-based aiding to reduce clutter, adaptive send and receive antenna
 - e.g. in satnav: integration of antenna and receiver
Overview

- Smart Antennas in Aerospace Applications
- Example of Smart Antenna for military naval and aerospace applications
 - null-steering antenna for satellite navigation
- Example of Smart Antenna for civil aerospace application
 - beam-steering antenna for satellite communication
- Video of SATCOM antenna demonstration
Adaptive antenna for satellite navigation

- Signal of GNSS signals is below noise floor
 - sensitive to interference
 - easy to jam

- Adaptive antennas for GPS
 - military: Controlled Radiation Pattern Antenna (CRPA)
 - null-steering antennas
 - null-steering and beam-steering
 - Space-Time Adaptive Processing (STAP)
Controlled Radiation Pattern Antenna (CRPA)

- Controlled Radiation Pattern Antennas (CRPAs) are array antennas, they optimise \(S / (N+I) \), two options:
 - beam-steering
 - null-steering
 - (or a combination)

- Null-steering versus beam-steering in general:
 - In the case of null-steering:
 the ratio between the gain in the direction of the jammer and the gain in the direction of the satellite is higher (for a small array)
 - In the case of null-steering:
 potential loss of wanted signal if a null is directed towards the satellite
 - In the case of beam-steering:
 large arrays needed for low-side lobes
Null-steering for GPS

- Null-steering antennas have special advantages in the case of GPS:
 - In the case of beam-steering:
 4 beams are needed to track 4 satellites which requires more antenna elements than needed to create nulls for one or more jammers
 - It is easier to create nulls towards the high level jammer signal than to create beams towards the low level GPS-signal (spread spectrum)

- State-of-the-art digital electronics enable combination of null-steering and beam-steering
Methods of null-steering

- **Some methods of null-steering:**
 - direct matrix inversion of the signal covariance matrix
 - method of steepest decent (LMS method): minimise output power (equals jammer power since satellite signals are below noise floor)
 - method of perturbation

- **Direct matrix inversion:**
 - + No iterations, exact solution, performance does not depend on number and power of jammers
 - - No closed control loop, practical implementation difficult (numerical instabilities, time consuming matrix inversion)
Methods of null-steering (2)

- **Method of steepest decent:**
 - + Closed control loop, simple implementation (even analog), not sensitive to non-linearities
 - - gain control loop difficult, convergence speed depends on difference in jammer power

- **Method of perturbation:**
 - + closed control loop, simple digital implementation, not sensitive to non-linearities
 - - often many iteration steps needed, convergence speed depends on difference in jammer power
Adaptive Nulling NAVSTAR Antenna (ANNA)

- **Prototype null-steering antenna**
 - Antenna to be used with L1/L2 PPS receivers
 - CRPA transparent for receivers (no interaction with RX needed)
 - Developed by NLR and MEOB (both NL)
 - Prototype for the Royal Netherlands Navy in the 80’s
 - NLR: implementation of algorithm, electronics development, integration and test
 - MEOB: design and procurement of mounting frame and protective casing
 - Significant influence of naval environment
 - Protected against high power shipboard transmitters
Controlled Radiation Pattern Antenna (CRPA)
Raytheon GAS-1 and ADAP

Naval applications: 7 antenna elements
Aircraft applications: 4 antenna elements

Array antenna +
antenna electronics

- **GAS-1**
 - nulling on one frequency

- **ADAP**
 - Space/Frequency and Space/Time Adaptive Processing (SFAP/STAP)
 - nulling on two frequencies
Current developments in CRPA antennas

- Combination of phased array antenna and digital receiver
- Raytheon Digital Anti-Jam Receiver (DAR)
 - space frequency adaptive processing (SFAP) technique
 - spatial nulls to suppress jammers,
 - multiple beams to amplify valid signals from GPS satellites.
Overview

- Smart Antennas in Aerospace Applications
- Example of Smart Antenna for military naval and aerospace applications
 - null-steering antenna for satellite navigation
- Example of Smart Antenna for civil aerospace application
 - beam-steering antenna for satellite communication
- Video of SATCOM antenna demonstration
Smart Antenna for airborne SATCOM

- **Passengers onboard aircraft want**
 - High-speed internet (web, multi-media) and
 - Television (Digital Video Broadcast via Satellite).

- **This can be realised by using a broadband SatCom antenna:**
 - Mechanically steered reflector/array antennas
 - Aerodynamic drag/Moving parts
 - Hybrid mechanically/electronically steered
 - Electronically steered phased array antennas
 - Conformal to the aircraft fuselage
 - No moving parts
FlySmart project: airborne antenna development

- Development of an **antenna system for airborne use**, to enable **broadband communication via Ku-band satellite**:
 - electronically scanned antenna (phased array antenna)
 - high gain, small beamwidth (2 to 3 degrees)
 - downlink frequencies: 10.7 - 12.75 GHz
 - fixed satellite service
 - broadcast satellite service
 - **broadband** antenna system (downlink up to 2 GHz)
 - antenna **conformal** to the aircraft fuselage
 - to improve aerodynamic characteristics
 - to increase antenna view
 - large scan angles (low elevation angles) to accommodate operation at high latitudes
Design of Ku-band receive antenna array for SATCOM

Inmarsat (L-band)

DVB-S/Internet (Ku-band)

Asynchronous data link (internet)

Ground Earth Station
FlySmart project: 2 antennas

- **Research on airborne phased array antenna**
 - larger bandwidth than current designs
 - larger scan angle than current designs
 - transmit and receive
 - fully environmentally qualified
 - study only

- **Demonstrator phased array antenna**
 - large bandwidth and scan angle
 - limited gain and beamwidth
 - receive only
 - limited environmental qualification
 - manufacturing and test
System aspects

- Ku-band receive-only antenna system with broadband optical beam-forming network and broadband phased array antenna

 AES receive band 1: 10.70 – 11.70 GHz
 Satellite TV: 11.70 – 12.50 GHz
 AES receive band 2: 12.50 – 12.75 GHz

 } 2 GHz bandwidth
Key technologies

- Development of broadband Ku-band antenna element/array
- Development of broadband beam forming network optical chip (CMOS compatible)
Design of dual-frequency L/Ku-band antenna

- Size L-band antenna = 8 * size Ku-band antenna
- Broadband Ku-band element: Stacked patches
- Design of L-band element is constrained by Ku-band element
- L-band element: Two crossed L-band slots in ground plane with feeding slots of Ku-band array
Design for dual-frequency breadboard antenna

- Feed Substrate
- GND plane with L-band slots
- Feed trace
- Patches
- "Foam"
- Aperture
- Trace layers
Development of broadband Ku-band antenna

- Stacked patch antenna element
Development of broadband Ku-band antenna

- Stacked patch antenna element with
 - Broadband radiation pattern
 - Broadband input impedance
Position of antenna on aircraft

- Required scan angles:

- Multiple satellites, one antenna on top
- Multiple satellites, two antenna (E-W)
- Multiple satellites, two antenna (S-N)

Beam will be steered based on aircraft position and attitude.
With two antennas max. view angle +/- 45 degr.
Beam Squint in case of phase shifting
\(f_{\text{min}} = 10.7 \text{ GHz}, \ f_{\text{mid}} = 11.7 \text{ GHz}, \ f_{\text{max}} = 12.75 \text{ GHz} \)

<table>
<thead>
<tr>
<th>(\theta) for (f = f_{\text{mid}})</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_f) for (f = f_{\text{min}})</td>
<td>0°</td>
<td>16.4°</td>
<td>33.1°</td>
<td>50.6°</td>
<td>71.3°</td>
</tr>
<tr>
<td>(\theta_f) for (f = f_{\text{max}})</td>
<td>0°</td>
<td>13.7°</td>
<td>27.3°</td>
<td>40.5°</td>
<td>52.6°</td>
</tr>
<tr>
<td>(\Delta \theta) for (f = f_{\text{min}})</td>
<td>0°</td>
<td>1.4°</td>
<td>3.1°</td>
<td>5.6°</td>
<td>11.3°</td>
</tr>
<tr>
<td>(\Delta \theta) for (f = f_{\text{max}})</td>
<td>0°</td>
<td>1.3°</td>
<td>2.7°</td>
<td>4.5°</td>
<td>7.4°</td>
</tr>
</tbody>
</table>
Single-Chip 1x8 OBFN
CMOS-Compatible Waveguide Technology

Waveguide Loss < 0.3 dB/cm
Thermal Tuning Mechanism
Average Power Consumption per Heater 0.25 W
Optical beamformer

Optical sideband filter chip in the same technology as the OBFN

MZI + Ring

5 mm
Ku-band demonstrator array

- 8x8 array preliminary measurements
- radiation pattern and relative gain
Technology Readiness Level FlySmart

- **TRL 1**: Basic principles observed and reported
- **TRL 2**: Technology concept and/or application formulated
- **TRL 3**: Analytical and experimental critical function and/or characteristic proof-of-concept
- **TRL 4**: Component and/or breadboard validation in laboratory environment
- **TRL 5**: Component and/or breadboard validation in relevant environment
- **TRL 6**: System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)
- **TRL 7**: System prototype demonstration in a space environment
- **TRL 8**: Actual system completed and “flight qualified” through test and demonstration (Ground or Flight)
- **TRL 9**: Actual system “flight proven” through successful mission operations

FP7 SANDRA
IS FlySmart
Overview

- **Smart Antennas in Aerospace Applications**
- **Example of Smart Antenna for military naval and aerospace applications**
 - null-steering antenna for satellite navigation
- **Example of Smart Antenna for civil aerospace application**
 - beam-steering antenna for satellite communication
- **Video of SATCOM antenna demonstration**
 - FlySmart/Anastasia
Demonstrator set-up (laboratory measurement)
Measurement plan

- **Objectives**
 1. Verify broadband properties of antenna and OBFN
 2. Verify optical beam steering capabilities

- **Measure C/N ratio for range of frequencies (objective 1):**
 - 10.7 to 11.7 GHz (steps of 100 MHz)

- **Measure C/N ratio for the following antenna positions (objective 2):**
 - Antenna at broadside (no beam steering)
 - Antenna rotated 27 degrees to left side
 - Antenna rotated 27 degrees to right side