Advanced Secondary Batteries And Their Applications for Hybrid and Electric Vehicles

Su-Chee Simon Wang
IEEE (Dec. 5, 2011)
Outline

Introduction to batteries
• Equilibrium and kinetics
• Various secondary batteries
 ▪ Lead acid batteries
 ▪ Nickel metal hydride batteries
 ▪ Lithium ion batteries
• Applications
 ▪ Electric vehicles
 ▪ Hybrid electric vehicles
Introduction to Batteries

• Battery terminology
 – Primary and secondary batteries
 – Cell voltage (open circuit)
 – Positive and negative electrodes
 – Cathode and anode
 – Power energy and charge
 – Battery cell module and pack
 – Charge and discharge curves
 – Cycle life
Primary and Secondary Batteries

• Primary Battery: not rechargeable (dry cell)
• Secondary Battery: rechargeable (lithium ion batteries)

• Battery is composed of
 – Positive electrode
 – Negative electrode
 – Electrolyte
 – Separator
 – Current collectors

\[E_{oc} = E^+ - E^- \]
(Cell V)
(Half cell V)
How to Determine Positive and Negative Electrodes
How to Calculate Cell Voltage

- **Use half cell reduction potentials (25 °C)**

<table>
<thead>
<tr>
<th>Electrode reaction</th>
<th>$E^\circ, \text{ V}$</th>
<th>Electrode reaction</th>
<th>$E^\circ, \text{ V}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Li}^+ + e \leftrightarrow \text{Li}$</td>
<td>-3.01</td>
<td>$\text{Ni}^{2+} + 2e \leftrightarrow \text{Ni}$</td>
<td>-0.23</td>
</tr>
<tr>
<td>$\text{Rb}^+ + e \leftrightarrow \text{Rb}$</td>
<td>-2.98</td>
<td>$\text{Sn}^{2+} + 2e \leftrightarrow \text{Sn}$</td>
<td>-0.14</td>
</tr>
<tr>
<td>$\text{Cs}^+ + e \leftrightarrow \text{Cs}$</td>
<td>-2.92</td>
<td>$\text{Pb}^{2+} + 2e \leftrightarrow \text{Pb}$</td>
<td>-0.13</td>
</tr>
<tr>
<td>$\text{K}^+ + e \leftrightarrow \text{K}$</td>
<td>-2.92</td>
<td>$\text{O}_2 + \text{H}_2\text{O} + 2e \leftrightarrow \text{HO}_2^- + \text{OH}^-$</td>
<td>-0.08</td>
</tr>
<tr>
<td>$\text{Ba}^{2+} + 2e \leftrightarrow \text{Ba}$</td>
<td>-2.92</td>
<td>$\text{D}^+ + e \leftrightarrow 1/2\text{D}_2$</td>
<td>-0.003</td>
</tr>
<tr>
<td>$\text{Sr}^{2+} + 2e \leftrightarrow \text{Sr}$</td>
<td>-2.89</td>
<td>$\text{H}^+ + e \leftrightarrow 1/2\text{H}_2$</td>
<td>0.00</td>
</tr>
<tr>
<td>$\text{Ca}^{2+} + 2e \leftrightarrow \text{Ca}$</td>
<td>-2.84</td>
<td>$\text{HgO} + \text{H}_2\text{O} + 2e \leftrightarrow \text{Hg} + 2\text{OH}^-$</td>
<td>0.10</td>
</tr>
<tr>
<td>$\text{Na}^+ + e \leftrightarrow \text{Na}$</td>
<td>-2.71</td>
<td>$\text{CuCl} + e \leftrightarrow \text{Cu} + \text{Cl}^-$</td>
<td>0.14</td>
</tr>
<tr>
<td>$\text{Mg(OH)}_2 + 2e \leftrightarrow \text{Mg} + 2\text{OH}^-$</td>
<td>-2.69</td>
<td>$\text{AgCl} + e \leftrightarrow \text{Ag} + \text{Cl}^-$</td>
<td>0.22</td>
</tr>
<tr>
<td>$\text{Mg}^{2+} + 2e \leftrightarrow \text{Mg}$</td>
<td>-2.38</td>
<td>$\text{Cu}^{2+} + 2e \leftrightarrow \text{Cu}$</td>
<td>0.34</td>
</tr>
<tr>
<td>$\text{Al(OH)}_3 + 3e \leftrightarrow \text{Al} + 3\text{OH}^-$</td>
<td>-2.34</td>
<td>$\text{Ag}_2\text{O} + \text{H}_2\text{O} + 2e \leftrightarrow 2\text{Ag} + 2\text{OH}^-$</td>
<td>0.35</td>
</tr>
<tr>
<td>$\text{Ti}^{2+} + 2e \leftrightarrow \text{Ti}$</td>
<td>-1.75</td>
<td>$1/2\text{O}_2 + \text{H}_2\text{O} + 2e \leftrightarrow 2\text{OH}^-$</td>
<td>0.40</td>
</tr>
<tr>
<td>$\text{Be}^{2+} + 2e \leftrightarrow \text{Be}$</td>
<td>-1.70</td>
<td>$\text{NiOOH} + \text{H}_2\text{O} + e \leftrightarrow \text{Ni(OH)}_2 + \text{OH}^-$</td>
<td>0.45</td>
</tr>
<tr>
<td>$\text{Al}^{3+} + 3e \leftrightarrow \text{Al}$</td>
<td>-1.66</td>
<td>$\text{Cu}^+ + e \leftrightarrow \text{Cu}$</td>
<td>0.52</td>
</tr>
<tr>
<td>$\text{Zn(OH)}_2 + 2e \leftrightarrow \text{Zn} + 2\text{OH}^-$</td>
<td>-1.25</td>
<td>$\text{I}_2 + 2e \leftrightarrow 2\text{I}^-$</td>
<td>0.54</td>
</tr>
<tr>
<td>$\text{Mn}^{2+} + 2e \leftrightarrow \text{Mn}$</td>
<td>-1.05</td>
<td>$2\text{AgO} + \text{H}_2\text{O} + 2e \leftrightarrow \text{Ag}_2\text{O} + 2\text{OH}^-$</td>
<td>0.57</td>
</tr>
<tr>
<td>$\text{Fe(OH)}_2 + 2e \leftrightarrow \text{Fe} + 2\text{OH}^-$</td>
<td>-0.88</td>
<td>$\text{Hg}^{2+} + 2e \leftrightarrow \text{Hg}$</td>
<td>0.80</td>
</tr>
<tr>
<td>$2\text{H}_2\text{O} + 2e \leftrightarrow \text{H}_2 + 2\text{OH}^-$</td>
<td>-0.83</td>
<td>$\text{Ag}^+ + e \leftrightarrow \text{Ag}$</td>
<td>0.80</td>
</tr>
<tr>
<td>$\text{Cd(OH)}_2 + 2e \leftrightarrow \text{Cd} + 2\text{OH}^-$</td>
<td>-0.81</td>
<td>$\text{Pd}^{2+} + 2e \leftrightarrow \text{Pd}$</td>
<td>0.83</td>
</tr>
<tr>
<td>$\text{Zn}^{2+} + 2e \leftrightarrow \text{Zn}$</td>
<td>-0.76</td>
<td>$\text{Ir}^{3+} + 3e \leftrightarrow \text{Ir}$</td>
<td>1.00</td>
</tr>
<tr>
<td>$\text{Ni(OH)}_2 + 2e \leftrightarrow \text{Ni} + 2\text{OH}^-$</td>
<td>-0.72</td>
<td>$\text{Br}_2 + 2e \leftrightarrow 2\text{Br}^-$</td>
<td>1.07</td>
</tr>
<tr>
<td>$\text{Ga}^{3+} + 3e \leftrightarrow \text{Ga}$</td>
<td>-0.52</td>
<td>$\text{O}_2 + 4\text{H}^+ + 4e \leftrightarrow 2\text{H}_2\text{O}$</td>
<td>1.23</td>
</tr>
<tr>
<td>$\text{S} + 2e \leftrightarrow \text{S}^{2-}$</td>
<td>-0.48</td>
<td>$\text{MnO}_2 + 4\text{H}^+ + 2e \leftrightarrow \text{Mn}^{2+} + 2\text{H}_2\text{O}$</td>
<td>1.23</td>
</tr>
<tr>
<td>$\text{Fe}^{2+} + 2e \leftrightarrow \text{Fe}$</td>
<td>-0.44</td>
<td>$\text{Cl}_2 + 2e \leftrightarrow 2\text{Cl}^-$</td>
<td>1.36</td>
</tr>
<tr>
<td>$\text{Cd}^{2+} + 2e \leftrightarrow \text{Cd}$</td>
<td>-0.40</td>
<td>$\text{PbO}_2 + 4\text{H}^+ + 2e \leftrightarrow \text{Pb}^{2+} + 2\text{H}_2\text{O}$</td>
<td>1.46</td>
</tr>
<tr>
<td>$\text{PbSO}_4 + 2e \leftrightarrow \text{Pb} + \text{SO}_4^{2-}$</td>
<td>-0.36</td>
<td>$\text{PbO}_2 + \text{SO}_4^{2-} + 4\text{H}^+ + 2e \leftrightarrow \text{PbSO}_4 + 2\text{H}_2\text{O}$</td>
<td>1.69</td>
</tr>
<tr>
<td>$\text{In}^{3+} + 3e \leftrightarrow \text{In}$</td>
<td>-0.34</td>
<td>$\text{F}_2 + 2e \leftrightarrow 2\text{F}^-$</td>
<td>2.87</td>
</tr>
<tr>
<td>$\text{TI}^+ + e \leftrightarrow \text{TI}$</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Co}^{2+} + 2e \leftrightarrow \text{Co}$</td>
<td>-0.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Less stable

More stable
How to Calculate Cell Voltage

- Half cell reduction potentials are measured as follows:
 - Cell voltage is measured between electrode A (Cu) and hydrogen electrode ($E_{oc} = E_A - E_{H2}$)
 - The potential of hydrogen electrode in “acid” is defined as zero volt ($E_{oc} = E_A - 0$)
 - The measured cell voltage is the half cell reduction potential of electrode A

\[\begin{align*}
2H^+ + 2e^- & \rightarrow H_2 \\
Cu^{2+} + 2e^- & \rightarrow Cu
\end{align*} \]
Calculate Cell Voltage
(Open circuit)

Positive electrode: Cu
Negative electrode: Zn

Cell open circuit voltage $E_{oc} = E^+_c - E^-_o$

- $E^+_c = 0.34$ V
- $E^-_o = -0.76$ V

$E_{oc} = 0.34 - (-0.76) = 1.1$ V (*intrinsic*)

Current: extrinsic
Table

Half Cell Reduction Potentials (25 °C)

<table>
<thead>
<tr>
<th>Electrode reaction</th>
<th>E°, V</th>
<th>Electrode reaction</th>
<th>E°, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$^+$ + e ↔ Li</td>
<td>-3.01</td>
<td>Ni$^{2+}$ + 2e ↔ Ni</td>
<td>-0.23</td>
</tr>
<tr>
<td>Rb$^+$ + e ↔ Rb</td>
<td>-2.98</td>
<td>Sn$^{2+}$ + 2e ↔ Sn</td>
<td>-0.14</td>
</tr>
<tr>
<td>Cs$^+$ + e ↔ Cs</td>
<td>-2.92</td>
<td>Pb$^{2+}$ + 2e ↔ Pb</td>
<td>-0.13</td>
</tr>
<tr>
<td>K$^+$ + e ↔ K</td>
<td>-2.92</td>
<td>O$_2$ + H$_2$O + 2e ↔ HO$_2^-$ + OH$^-$</td>
<td>-0.08</td>
</tr>
<tr>
<td>Ba$^{2+}$ + 2e ↔ Ba</td>
<td>-2.92</td>
<td>D$^+$ + e ↔ 1/2D$_2$</td>
<td>-0.003</td>
</tr>
<tr>
<td>Sr$^{2+}$ + 2e ↔ Sr</td>
<td>-2.89</td>
<td>H$^+$ + e ↔ 1/2H$_2$</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca$^{2+}$ + 2e ↔ Ca</td>
<td>-2.84</td>
<td>HgO + H$_2$O + 2e ↔ Hg + 2OH$^-$</td>
<td>0.10</td>
</tr>
<tr>
<td>Na$^+$ + e ↔ Na</td>
<td>-2.71</td>
<td>CuCl + e ↔ Cu + Cl$^-$</td>
<td>0.14</td>
</tr>
<tr>
<td>Mg(OH)$_2$ + 2e ↔ Mg + 2OH$^-$</td>
<td>-2.69</td>
<td>AgCl + e ↔ Ag + Cl$^-$</td>
<td>0.22</td>
</tr>
<tr>
<td>Mg$^{2+}$ + 2e ↔ Mg</td>
<td>-2.38</td>
<td>Cu$^{2+}$ + 2e ↔ Cu</td>
<td>0.34</td>
</tr>
<tr>
<td>Al(OH)$_3$ + 3e ↔ Al + 3OH$^-$</td>
<td>-2.34</td>
<td>Ag$_2$O + H$_2$O + 2e ↔ 2Ag + 2OH$^-$</td>
<td>0.35</td>
</tr>
<tr>
<td>Ti$^{4+}$ + 2e ↔ Ti</td>
<td>-1.75</td>
<td>1/2O$_2$ + H$_2$O + 2e ↔ 2OH$^-$</td>
<td>0.40</td>
</tr>
<tr>
<td>Be$^{2+}$ + 2e ↔ Be</td>
<td>-1.70</td>
<td>NiOOH + H$_2$O + e ↔ Ni(OH)$_2$ + OH$^-$</td>
<td>0.45</td>
</tr>
<tr>
<td>Al$^{3+}$ + 3e ↔ Al</td>
<td>-1.66</td>
<td>Cu$^+$ + e ↔ Cu</td>
<td>0.52</td>
</tr>
<tr>
<td>Zn(OH)$_2$ + 2e ↔ Zn + 2OH$^-$</td>
<td>-1.25</td>
<td>I$_2$ + 2e ↔ 2I$^-$</td>
<td>0.54</td>
</tr>
<tr>
<td>Mn$^{2+}$ + 2e ↔ Mn</td>
<td>-1.05</td>
<td>2AgO + H$_2$O + 2e ↔ Ag$_2$O + 2OH$^-$</td>
<td>0.57</td>
</tr>
<tr>
<td>Fe(OH)$_2$ + 2e ↔ Fe + 2OH$^-$</td>
<td>-0.88</td>
<td>Hg$^{2+}$ + 2e ↔ Hg</td>
<td>0.80</td>
</tr>
<tr>
<td>2H$_2$O + 2e ↔ H$_2$ + 2OH$^-$</td>
<td>-0.83</td>
<td>Ag$^+$ + e ↔ Ag$^+$</td>
<td>0.80</td>
</tr>
<tr>
<td>Cd(OH)$_2$ + 2e ↔ Cd + 2OH$^-$</td>
<td>-0.81</td>
<td>Pd$^{2+}$ + 2e ↔ Pd</td>
<td>0.83</td>
</tr>
<tr>
<td>Zn$^{2+}$ + 2e ↔ Zn</td>
<td>-0.76</td>
<td>Ir$^{3+}$ + 3e ↔ Ir</td>
<td>1.00</td>
</tr>
<tr>
<td>Ni(OH)$_2$ + 2e ↔ Ni + 2OH$^-$</td>
<td>-0.72</td>
<td>Br$_2$ + 2e ↔ 2Br$^-$</td>
<td>1.07</td>
</tr>
<tr>
<td>Ga$^{3+}$ + 3e ↔ Ga</td>
<td>-0.52</td>
<td>O$_2$ + 4H$^+$ + 4e ↔ 2H$_2$O</td>
<td>1.23</td>
</tr>
<tr>
<td>S + 2e ↔ S$^{2-}$</td>
<td>-0.48</td>
<td>MnO$_2$ + 4H$^+$ + 2e ↔ Mn$^{2+}$ + 2H$_2$O</td>
<td>1.23</td>
</tr>
<tr>
<td>Fe$^{3+}$ + 2e ↔ Fe</td>
<td>-0.44</td>
<td>Cl$_2$ + 2e ↔ 2Cl$^-$</td>
<td>1.36</td>
</tr>
<tr>
<td>Cd$^{2+}$ + 2e ↔ Cd</td>
<td>-0.40</td>
<td>PbO$_2$ + 4H$^+$ + 2e ↔ Pb$^{2+}$ + 2H$_2$O</td>
<td>1.46</td>
</tr>
<tr>
<td>PbSO$_4$ + 2e ↔ Pb + SO$_4^{2-}$</td>
<td>-0.36</td>
<td>PbO$_2$ + SO$_4^{2-}$ + 4H$^+$ + 2e ↔ PbSO$_4$ + 2H$_2$O</td>
<td>1.69</td>
</tr>
<tr>
<td>In$^{3+}$ + 3e ↔ In</td>
<td>-0.34</td>
<td>F$_2$ + 2e ↔ 2F$^-$</td>
<td>2.87</td>
</tr>
<tr>
<td>Tl$^+$ + e ↔ Tl</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co$^{2+}$ + 2e ↔ Co</td>
<td>-0.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculate Cell Voltage (Open Circuit)

- Hydrogen Fuel Cells (with hydrogen and oxygen electrodes)
 \[\text{O}_2 + 4\text{H}^+ + 4e \leftrightarrow 2\text{H}_2\text{O} \quad 1.23 \text{ V} \]
 \[\text{H}^+ + e \leftrightarrow 1/2\text{H}_2 \quad 0.00 \text{ V} \]
 \[E_{oc} = 1.23 - 0 = \quad 1.23 \text{ V} \]

- Lithium Fluorine Battery
 \[\text{F}_2 + 2e \leftrightarrow 2\text{F}^- \quad 2.87 \text{ V} \]
 \[\text{Li}^+ + e \leftrightarrow \text{Li} \quad -3.01 \text{ V} \]
 \[E_{oc} = 2.87 - (-3.01) = \quad 5.88 \text{ V} \]
How to Make High Voltage Batteries

Strong reducing agents

<table>
<thead>
<tr>
<th>Period</th>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>1</td>
<td>1.0079</td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
<td>Li</td>
<td>3</td>
<td>6.941</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>Na</td>
<td>11</td>
<td>22.990</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>K</td>
<td>19</td>
<td>39.098</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>Rb</td>
<td>37</td>
<td>85.468</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>Cs</td>
<td>55</td>
<td>132.91</td>
</tr>
<tr>
<td>87</td>
<td>Fr</td>
<td>Fr</td>
<td>87</td>
<td>(223)</td>
</tr>
</tbody>
</table>

Strong oxidants

<table>
<thead>
<tr>
<th>Period</th>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Be</td>
<td>Be</td>
<td>4</td>
<td>9.0122</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>Mg</td>
<td>12</td>
<td>24.305</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>Al</td>
<td>13</td>
<td>26.982</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>Cl</td>
<td>17</td>
<td>35.453</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>Ar</td>
<td>18</td>
<td>39.948</td>
</tr>
</tbody>
</table>

* Lanthanide series
 - La: 138.91
 - Ce: 140.12
 - Pr: 140.91
 - Nd: 144.24
 - Pm: 145
 - Sm: 150.36
 - Eu: 151.96
 - Gd: 157.25
 - Tb: 158.93
 - Dy: 162.50
 - Ho: 164.93

Actinide series
 - Ac: 227
 - Th: 232.04
 - Pa: 231.04
 - U: 238.03
 - Np: 237
 - Pu: 244
 - Am: 243
 - Cm: 247
 - Bk: 247
 - Cf: 251
 - Es: 252
 - Fm: 257
 - Md: 258
 - No: 259
 - Lr: 262
Cathode and Anode

- Cathode: the electrode where reduction reaction takes place
- Anode: the electrode where oxidation reaction takes place

Secondary battery

- During charge
 - Negative electrode is the cathode
 - Positive electrode is the anode
- During discharge
 - Positive electrode is the cathode
 - Negative electrode is the anode
Cathode and Anode

Secondary Battery

- **During charge**
 - Negative electrode is the cathode
 \[\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \]
 - Positive electrode is the anode
 \[\text{Cu} \rightarrow \text{Cu}^{2+} + 2e^- \]

- **During discharge**
 - Positive electrode is the cathode
 \[\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \]
 - Negative electrode is the anode
 \[\text{Zn} \rightarrow \text{Zn}^{2+} + 2e^- \]
Power Energy and Charge

- **Power = Voltage * Current**
 - $1 \text{ W (watt)} = 1 \text{ V (volt)} \times 1 \text{ A (ampere)}$
 - $1 \text{ kW} = 1000 \text{ W}$

- **Energy = Power * Time**
 - $1 \text{ Wh (watt-hour)} = 1 \text{ W} \times 1 \text{ h (hour)}$
 - $1 \text{ kWh} = 1000 \text{ Wh}$
 - $1 \text{ Wh} = 3600 \text{ J (joules)}$

- **Charge = Current * Time**
 - $1 \text{ Ah} = 1 \text{ A} \times 1 \text{ h}$
 - $1 \text{ kAh} = 1000 \text{ Ah}$
 - $1 \text{ Ah} = 3600 \text{ C (coulombs)}$
Power Energy and Charge

• **Specific power**: power withdrawn per unit battery weight
 – W/kg

• Power density: power withdrawn per unit battery volume
 – W/L

• **Specific energy**: energy stored per unit battery weight
 – Wh/kg

• Energy density: energy stored per unit battery volume
 – Wh/L
Power Energy and Charge

• **Examples**
 – AA primary alkaline battery
 • 1.5 V (3 Ah)
 – Lead acid SLI battery
 • 12 V (50 Ah)
 – Prius battery
 • 202 V (6.5 Ah)
 – Lithium ion battery (laptop)
 • 10 V (5 Ah)

• **Gasoline (tank)**
 – 600 kWh
NiMH Cell
1.2 V

NiMH Module
11 cells
11 x 1.2 = 13.2 V

NiMH Pack for EV1
26 Modules
26 x 13.2 = 343 V
Charge and Discharge Curves

Constant current charge (I_{ch}) and discharge (I_{dis})

- E_{ch}
- overpotential: η_{ch}
- E_{oc}
- E_{dis}
- overpotential: η_{dis}

Voltage vs. Time

0 SOC (%) 100 0 DOD (%) 100
Charge and Discharge Curves

- Charge voltage $E_{ch} > E_{oc}$
- Discharge voltage $E_{dis} < E_{oc}$
- Energy efficiency = (voltaic efficiency * coulombic efficiency) = $(E_{dis} / E_{ch}) \times (I_{dis} \times t_{dis} / I_{ch} \times t_{ch}) < 1$
- The voltage drop is caused by cell resistance
 - $\Delta E_{dis} = E_{oc} - E_{dis} = \eta_{dis} = I_{dis} \times R$ (R: broader resistance)
 - $\Delta E_{ch} = E_{ch} - E_{oc} = \eta_{ch} = I_{ch} \times R$ (R: extrinsic)

![Constant current charge (I_{ch}) and discharge (I_{dis}) graph](image)
Battery Component Resistance Distribution

- Nickel metal hydride electric vehicle battery (~300 W/kg)

<table>
<thead>
<tr>
<th>Component</th>
<th>Resistance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>0.1 mohm</td>
<td>0.8 %</td>
</tr>
<tr>
<td>tabs</td>
<td>0.6 mohm</td>
<td>4.7 %</td>
</tr>
<tr>
<td>KOH/separators</td>
<td>3 mohm</td>
<td>23.6 %</td>
</tr>
<tr>
<td>positive electrode</td>
<td>1.5 mohm</td>
<td>11.8 %</td>
</tr>
<tr>
<td>positive substrate</td>
<td>2.5 mohm</td>
<td>19.7 %</td>
</tr>
<tr>
<td>negative electrode</td>
<td>2 mohm</td>
<td>15.7 %</td>
</tr>
<tr>
<td>negative substrate</td>
<td>3 mohm</td>
<td>23.6 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12.7 mohm</td>
<td>100 %</td>
</tr>
</tbody>
</table>
Charge and Discharge

- State of charge (SOC, %)
- Depth of discharge (DOD, %)
- SOC + DOD = 100
- Self discharge
- Discharge
 - “C” rate
 - 1C, 2C, 1/2C
Cycle Life

- Cycle life is the number of charge-discharge cycles a battery can deliver (has to meet energy and power performance targets)

- Cycle life depends on depth of discharge and temperature
 - Examples
 - lead acid battery
 - nickel cadmium battery
Outline

• Introduction to batteries
 ➢ Equilibrium and kinetics, $E_{oc} > E_{dis}$
• Various secondary batteries
 ▪ Lead acid batteries
 ▪ Nickel metal hydride batteries
 ▪ Lithium ion batteries
• Applications
 ▪ Electric vehicles
 ▪ Hybrid electric vehicles
Equilibrium: Thermodynamics

- ΔG: Free energy change from reactants to products during discharge (J/mole) \rightarrow negative value

 $\Delta G = - nF E_{oc}$ ($nF E_{oc}$: electric work) \leftrightarrow Max.

 - n: Number of moles of electron transferred
 - F: Faraday’s constant (96500 C/mole)
 - E_{oc}: Open circuit cell voltage

- Theoretical Specific energy

 $nF E_{oc}$ / total weight of reactants
Theoretical Specific Energy
(Lithium Ion Battery)

- Lithium ion battery half cell reactions

 (+) $\text{CoO}_2 + \text{Li}^+ + e \leftrightarrow \text{LiCoO}_2 \quad n = 1$

 $E^o = 1 \text{ V}$

 (-) $\text{Li}^+ + \text{C}_6 + e \leftrightarrow \text{LiC}_6$

 $E^o \sim -3 \text{ V}$

- Overall reaction during discharge

 $\text{CoO}_2 + \text{LiC}_6 \rightarrow \text{LiCoO}_2 + \text{C}_6$

 $E_{oc} = E^+ - E^- = 1 - (-3) = 4 \text{ V}$

 $E_{oc} = 4 \text{ V}$
Theoretical Specific Energy
(Lithium Ion Battery)

• Free energy change (ΔG) during discharge
 \[\Delta G = -nFE_{oc} = -1 \times 96500 \times 4 = -386000 \text{ J} \]
 \[= -386 \text{ kJ} = -107.2 \text{ Wh/mole} \]

• Total weight of reactants
 \[\text{CoO}_2 + \text{LiC}_6 \rightarrow \text{LiCoO}_2 + \text{C}_6 \]
 \[\text{CoO}_2 \rightarrow 91 \text{ grams} \]
 \[\text{LiC}_6 \rightarrow 7 + 12 \times 6 = 79 \text{ grams} \]
 Total weight \(\rightarrow 170 \text{ grams (0.17 kg)/mole} \)

• Theoretical specific energy
 \[107.2 \text{ Wh/0.17 kg} = 630.6 \text{ Wh/kg} \]

• Theoretical energy density
 \[107.2 \text{ Wh/0.055 L} = 1949 \text{ Wh/L} \]
Practical Specific Energy

- Practical specific energy of a battery is significantly lower than the theoretical value (~30%) $\Rightarrow \sim 190 \text{ Wh/kg}$ for lithium battery (USABC target for EV $> 150 \text{ Wh/kg}$)

 - Lower discharge voltage ($E_{\text{dis}} < E_{\text{oc}}$)
 - Voltage losses (broader resistance)
 - Extra material weight
 - Current collectors
 - Terminals
 - Battery case
 - Separators

Theoretical specific energy $= nF E_{\text{oc}} / \text{total weight of reactants} = 630.6 \text{ Wh/kg}$
Extra Materials

• Battery current collectors and terminals
 – Collect current from electrodes and interconnect to next battery cells
 – Use materials with high electric conductivity and good heat transfer coefficient

• Battery case
 – Contain all battery components
 – Use materials inert with electrolyte and electrodes
 – Need safety release valve with sealed cells

• Separator
 – Separate positive and negative electrodes (prevent short circuit)
 – Made of insulating materials with high porosity
Practical Specific Energy

- Practical specific energy of a battery is significantly lower than the theoretical value (<30%)
 - Lower discharge voltage \(E_{\text{dis}} < E_{\text{oc}} \)
 - Activation polarization losses
 - Ohmic losses
 - Concentration polarization losses
 - Extra material weight
 - Current collectors
 - Terminals
 - Battery case
 - Separators
Kinetics in Batteries

- Source of voltage losses (broad resistance)
 - Electrode activation polarization losses (η_a)
 - Butler-Volmer equation
 - Depends on electrode reactions
 - Ohmic losses (η_Ω)
 - Ohm’s law (Ohmic resistance)
 - Electronic resistance (electrode current collector, tabs. and terminals)
 - Ionic resistance (electrolyte and separator)
 - Temperature effects
 - Concentration polarization losses (η_c)
 - Nernst equation
 - Depends on diffusion in electrolyte and solid state
Charge and Discharge Curves

Constant current charge (I_{ch}) and discharge (I_{dis})

- Charge
- Overcharge
- Discharge

E_{ch}

Overpotential: η_{ch}

$\eta_{dis} = \eta_a + \eta_\Omega + \eta_c$

E_{dis}

E_{oc}

η^{+}

η^{-}

SOC (%): 0 to 100

DOD (%): 0 to 100

Time vs. Voltage Diagram

- Voltage scale
- Time scale

+ (dis)
Kinetics in Batteries

- Sources of voltage losses ($E_{oc} - E_{dis}$):
 - Electrode activation polarization losses
 - Butler-Volmer equation
 - Ohmic losses
 - Ohm’s law
 - Electronic resistance (electrode current collector, tabs, and terminals)
 - Ionic resistance (electrolyte and separator)
 - Concentration polarization losses
 - Nernst equation
Activation Polarization Losses
(Butler-Volmer Equation)

\[i = i_0 \left[e^{\frac{(1-\alpha)\eta F}{RT}} - e^{-\alpha\eta F / RT} \right] \]

- Current density \(i \) (electrochemical reaction at electrode/electrolyte interface) is a function of:
 - \(\eta_a \): Activation polarization loss
 - \(i_0 \): Exchange current density
 - \(\alpha \): The symmetry factor
 - \(F \): Faraday’s constant
 - \(R \): Molar gas constant
 - \(T \): Temperature
Effect of Rate on Discharge

Rate Dependence of Discharge Curves for 12-EV-85 Modules
discharge voltage vs. discharge capacity

\[i = i_0 \left[e^{(1-\alpha)\eta F/RT} - e^{-\alpha\eta F/RT} \right] \]

Higher current \(\Rightarrow \) higher \(\eta \)

Concentration polarization losses

C/8 Rate

2-C Rate

Capacity (Ah)

Voltage (V)

- 10A
- 20A
- 40A
- 80A
- 160A
Concentration Polarization Losses (Nernst Equation)

• During discharge
 – Reaction at the positive electrode:
 \[\text{Cu}^{+2} + 2e^- \rightarrow \text{Cu} \]
 – Reaction at the negative electrode:
 \[\text{Zn} \rightarrow \text{Zn}^{+2} + 2e^- \]
 – Cell reaction:
 \[\text{Zn} + \text{Cu}^{+2} \rightarrow \text{Cu} + \text{Zn}^{+2} \]

• Nernst equation

\[
E_{oc, real} = E_{oc, table} + \frac{RT}{nF} \ln \left(\frac{A^a}{B^b} \right)
\]

- \(A \): Concentration of \(\text{Cu}^{+2} \)
- \(B \): Concentration of \(\text{Zn}^{+2} \)
- \(a \) and \(b \) (= 1): factor for \(\text{Cu}^{+2} \) and \(\text{Zn}^{+2} \)
- \(R \): Molar gas constant
- \(T \): Temperature
- \(F \): Faraday’s constant

\[
E_{oc, real} = E_{oc, table} + \frac{RT}{nF} \ln \left(\frac{\text{Cu}^{+2}}{\text{Zn}^{+2}} \right)
\]

(If \(\text{Zn}^{+2} = \text{Cu}^{+2} = 1M \))
Total Voltage Losses

- $E_{oc} - E_{dis} = \text{Total voltage losses (} \eta_{dis}, \text{ extrinsic)} = \text{Activation losses (} \eta_a) + \text{Ohmic losses (} \eta_\Omega) + \text{Concentration losses (} \eta_c)$
Model: Porous Electrode Theory

- Porous electrode theory
 - Butler-Volmer equation
 - Ohm’s law

For a battery cell
Power = f (1/R)
R = f (1/surface area)
MATLAB Model

Block Parameters: 200 volts, 6.5 Ah Ni-MH battery

- Battery type: Lead-Acid
- Nominal Voltage (V): 12
- Rated Capacity (Ah): 32
- Initial State-Of-Charge (%): 100

- EO = 12.645, R = 0.009375, K = 0.33, A = 0.66, B = 117.1875

Graph showing voltage over time:

- Voltage ranges from 14 to 9
- Time (hours) ranges from 0 to 2

Diagram of a battery model showing components such as voltage, current, and state-of-charge.
Experimental Results
V.S. MATLAB Model

Marine Lead Acid Battery (12V, 32 Ah)

- C/2 Test
- 1C Test
- 2C Test
- C/2 Model
- 1 C Model
- 2 C Model
Outline

• Introduction to batteries
• Equilibrium and kinetics
 ➢ Various secondary batteries
 ➢ Lead acid batteries
 ▪ Nickel metal hydride batteries
 ▪ Lithium ion batteries
• Applications
 ▪ Electric vehicles
 ▪ Hybrid electric vehicles
Lead Acid Batteries

- Invented by Planté in 1860
- Lead acid starter batteries are enabling technology for gasoline powered IC engine cars
- Almost all vehicles use lead acid batteries for starter lighting and ignition (SLI) systems
- It is 20 billion dollars industry (total battery industry ~ 30 billion dollars)
Lead Acid Batteries

- Positive electrodes
 - PbO₂
- Negative electrodes
 - Pb
- Current collectors
 - Lead (or alloy) grids
- Separators
 - Porous or glass mat
- Electrolyte
 - 5M H₂SO₄ aqueous solution
Theoretical Specific Energy

- Lead acid battery half cell reactions
 \[\text{PbO}_2 + \text{SO}_4^{2-} + 4 \text{H}^+ + 2 \text{e} \leftrightarrow \text{PbSO}_4 + 2 \text{H}_2\text{O} \]
 \[E^\circ = 1.69 \text{ V} \]

 \[\text{PbSO}_4 + 2 \text{e} \leftrightarrow \text{Pb} + \text{SO}_4^{2-} \]
 \[E^\circ = -0.36 \text{ V} \]

- Overall reaction during discharge
 \[\text{PbO}_2 + \text{Pb} + 2\text{H}_2\text{SO}_4 \rightarrow 2 \text{PbSO}_4 + 2 \text{H}_2\text{O} \]
 \[V_{oc} = V_+ - V_- = 1.69 - (-0.36) = 2.05 \text{ V} \]
Theoretical Specific Energy

- Free energy change (ΔG) during discharge
 \[\Delta G = -nFE = -2 \times 96500 \times 2.05 = -395700 \text{ J} \]
 \[= -395.7 \text{ kJ} = -109.9 \text{ Wh/mole} \]

- Total weight of reactants
 \[\text{PbO}_2 + \text{Pb} + 2\text{H}_2\text{SO}_4 \rightarrow 2 \text{ PbSO}_4 + 2 \text{ H}_2\text{O} \]
 \[\text{PbO}_2 \rightarrow 239 \text{ grams} \]
 \[\text{Pb} \rightarrow 207 \text{ grams} \]
 \[2\text{H}_2\text{SO}_4 \rightarrow 98 \times 2 = 196 \text{ grams} \]
 \[\text{Total weight} \rightarrow 642 \text{ grams (0.642 kg)/mole} \]

- Theoretical specific energy
 \[109.9 \text{ Wh/0.642 kg} = \textbf{171 Wh/kg} \]

- Theoretical energy density
 \[109.9 \text{ Wh/0.1 L} = 1099 \text{ Wh/L} \]
Practical Specific Energy

• Practical specific energy < 20 % theoretical specific energy (171 Wh/kg) ➔ ~ 34 Wh/kg due to:
 – Voltage losses (up to 10%)
 – Inactive weight (~75%)
 • Current collectors
 • Tabs and terminals
 • Solvent (water) in electrolyte
 – Low utilization of active material

USABC target for EV applications: > 150 Wh/kg
Charge Lead Acid Batteries

- During charge:
 - \(2 \text{ PbSO}_4 + 2 \text{ H}_2\text{O} \rightarrow \text{PbO}_2 + \text{Pb} + \text{H}_2\text{SO}_4\) (2.05 V)
 - Competing reaction: \(2\text{H}_2\text{O} \rightarrow \text{O}_2 + 2\text{H}_2\) (1.23 V)
Electrolyte (H_2SO_4) Concentration

- Overall reaction during charge

 $$2 \text{PbSO}_4 + 2 \text{H}_2\text{O} \rightarrow \text{PbO}_2 + \text{Pb} + \text{H}_2\text{SO}_4$$

 The concentration of sulfuric acid increases to 5 M

- Overall reaction during discharge

 $$\text{PbO}_2 + \text{Pb} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{PbSO}_4 + 2 \text{H}_2\text{O}$$

 The concentration of sulfuric acid decreases
Cell Capacity Under Different Discharge Rates

- 4.59 Ah
- 5.10 Ah
- 5.6 Ah
- 6.00 Ah
Failure Mode

- Positive electrode
 - Lead grid corrosion
 \[
 \text{PbO}_2 + \text{Pb} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{PbSO}_4 + 2 \text{H}_2\text{O}
 \]
 - Shedding
 - 70% volume change from PbO$_2$ to PbSO$_4$ (discharge)

- Negative electrode
 - Sulfation (the formation of PbSO$_4$)

- Cycle life depends on DOD and temperature
Outline

• Introduction to batteries
• Equilibrium and kinetics
• Various secondary batteries
 ▪ Lead acid batteries
 ▸ Nickel metal hydride batteries
 ▪ Lithium ion batteries
• Applications
 ▪ Electric vehicles
 ▪ Hybrid electric vehicles
Nickel Metal Hydride Batteries

• Became commercially available around 1992
• Metal hydride is actually a solid phase hydrogen intercalation electrode
• Nickel metal hydride battery has high power and good cycle life for HEV applications
• It is > 1 billion dollars industry (total battery industry ~ 30 billion dollars)
Nickel Metal Hydride Batteries

• Positive electrodes
 – Nickel hydroxide pasted onto nickel foam or sheet substrate

• Negative electrodes
 – Most common material is AB_5 or $\text{MmNi}_{3.55}\text{Co}_{0.75}\text{Al}_{0.2}\text{Mn}_{0.5}$ where Mm is misch metal, an alloy consisting of 50% cerium, 25% lanthanum, 15% neodymium, and 10% other rare-earth metals and iron

• Separators
 – Polymer with submicron pores

• Electrolyte
 – 30% KOH aqueous solution
Theoretical Specific Energy

- Nickel metal hydride battery half cell reactions
 \[
 \text{NiOOH} + \text{H}_2\text{O} + e \leftrightarrow \text{Ni(OH)}_2 + \text{OH}^- \\
 E^o = 0.45 \text{ V}
 \]
 \[
 \text{M} + \text{H}_2\text{O} + e \leftrightarrow \text{MH} + \text{OH}^- \\
 E^o = -0.83 \text{ V}
 \]

- Overall reaction during discharge
 \[
 \text{NiOOH} + \text{MH} \rightarrow \text{Ni(OH)}_2 + \text{M} \\
 E_{oc} = E_+ - E_- = 0.45 - (-0.83) = 1.28 \text{ V}
 \]
Theoretical Specific Energy

• Free energy change (ΔG) during discharge

 \[\Delta G = -nFE = -1 \times 96500 \times 1.28 = -123520 \text{ J} \]

 \[= -123.5 \text{ kJ} = -34.3 \text{ Wh/mole} \]

• Total weight of reactants

 NiOOH + MH \rightarrow Ni(OH)$_2$ + M

 NiOOH \rightarrow 92 grams

 MH \rightarrow 70 grams

 Total weight \rightarrow 162 grams (0.162 kg)/mole

• Theoretical specific energy

 \[34.3 \text{ Wh}/0.162 \text{ kg} = \textbf{212 Wh/kg} \]

• Theoretical energy density

 \[34.3 \text{ Wh}/0.02 \text{ L} = 1715 \text{ Wh/L} \]
Practical Specific Energy

- Practical specific energy up to 45% theoretical specific energy (212 Wh/kg) ➔ up to 90 Wh/kg due to:
 - Voltage losses (up to 10%)
 - Less inactive weight (~50%)
 - Current collectors
 - Tabs and terminals
 - Solvent (water) in electrolyte
 - High utilization of active material (~90%)
Effects of Discharge Rate on Capacity

- Capacity least affected by discharge rate among commonly used batteries (best abuse tolerance)

![Flat discharge voltage curve](image)

- C/8 rate
- 3HR (1.59A) 4.6 Ah
- 5HR (1.02A) 5.1 Ah
- 10HR (560mA) 5.6 Ah
- 20HR (300mA) 6 Ah
Outline

• Introduction to batteries
• Equilibrium and kinetics
• Various secondary batteries
 ▪ Lead acid batteries
 ▪ Nickel metal hydride batteries
 ➢ Lithium ion batteries
• Applications
 ▪ Electric vehicles
 ▪ Hybrid electric vehicles
Lithium Ion Batteries

• Invented by Dr. Goodenough at U. Texas in 1982 and became commercially available in 1991 (Sony)

• Both lithium cobalt oxide and carbon electrodes are intercalation electrodes

• Have safety issues for applications in HEV and plug-in HEV

• It is 5 billion dollars industry for applications in portable electronics (total battery industry ~ 30 billion dollars)
Lithium Ion Batteries

• Positive electrodes
 – Layered lithium metal oxide \((\text{LiMO}_2, \text{M} = \text{cobalt, nickel, manganese, aluminum, or combination of two to three metals})\), spinel lithium manganese oxide \((\text{LiMn}_2\text{O}_4)\), and lithium iron phosphate \((\text{LiFePO}_4)\) on aluminum current collector

• Negative electrodes
 – **Carbon** or **graphite** on copper current collector

• Separators
 – Celgard microporous, polyethylene, or ceramic separators

• Electrolyte
 – \(\text{LiPF}_6\) dissolved in ethylene carbonate \((\text{EC})\)
 • Solvent with high dielectric constant \((89.6 \text{ at } 40\,^\circ\text{C})\)
 • Lithium salt with high conductivity
 • 0.005 S/cm as compared to 0.5 S/cm for aqueous electrolyte
Carbon Negative Electrode

- Prevent **lithium metal deposition** (or formation of lithium **dendrite**)
 - Lithium metal deposition could still happen during rapid charge when Temp < 5°C
 - Dendrite could cause short circuit and **thermal runaway**
Lithium Ion Batteries

Lithium ion battery 18650
- 3.6 V, 2 Ah
- 7.2 Wh

Alkaline AA battery
- 1.5 V, 1.5 Ah
- 2.25 Wh
Theoretical Specific Energy

- Lithium ion battery half cell reactions
 \[\text{CoO}_2 + \text{Li}^+ + e \leftrightarrow \text{LiCoO}_2 \]
 \[E^o = 1 \text{ V} \]
 \[\text{Li}^+ + \text{C}_6 + e \leftrightarrow \text{LiC}_6 \]
 \[E^o \sim -3 \text{ V} \]

- Overall reaction during discharge
 \[\text{CoO}_2 + \text{LiC}_6 \rightarrow \text{LiCoO}_2 + \text{C}_6 \]
 \[E_{oc} = E_+ - E_- = 1 - (-3.01) = 4 \text{ V} \]
Theoretical Specific Energy

- Free energy change (ΔG) during discharge
 \[\Delta G = -nFE = -1 \times 96500 \times 4 = -386000 \text{ J} \]
 \[= -386 \text{ kJ} = -107.2 \text{ Wh/mole} \]

- Total weight of reactants
 \[
 \text{CoO}_2 + \text{LiC}_6 \rightarrow \text{LiCoO}_2 + \text{C}_6
 \]
 \[
 \text{CoO}_2 \rightarrow 91 \text{ grams}
 \]
 \[
 \text{LiC}_6 \rightarrow 79 \text{ grams}
 \]
 Total weight \(\rightarrow \) 170 grams (0.17 kg)/mole

- Theoretical specific energy
 \[
 107.2 \text{ Wh}/0.17 \text{ kg} = \textbf{630.6 Wh/kg}
 \]

- Theoretical energy density
 \[
 107.2 \text{ Wh}/0.055 \text{ L} = 1949 \text{ Wh/L}
 \]
Practical Specific Energy

• Practical specific energy up to 30% theoretical specific energy (630.6 Wh/kg) ➔ ~190 Wh/kg due to:
 – Voltage losses (up to 10%)
 – Less inactive weight (~35%)
 • Current collectors
 • Tabs and terminals
 • Electrolyte
 • Carbon in negative electrode
 – Utilization of active material (~50%)
 • Intercalation electrodes
Charge and Discharge

- Lithium batteries cannot use aqueous electrolyte

![Graph showing voltage and current for lithium batteries with aqueous electrolyte.]

- Water decomposition voltage: 1.23 V
- Lithium ion battery: ~4 V
- H₂ evolution: -3.2 V
- O₂ evolution: 1.8 V
Charge

- Overall reaction during charge

\[\text{LiCoO}_2 + \text{C}_6 \rightarrow \text{CoO}_2 + \text{LiC}_6 \]

Lithium metal deposition could still happen during rapid charge when

Temp < 5°C
Overcharge

- Positive electrode is oxidized and oxygen released (exothermic reaction)

\[
\text{LiCoO}_2 + C_6 \rightarrow \text{CoO}_2 + \text{LiC}_6 \text{ (theoretical)}
\]

\[
\text{LiCoO}_2 + C_6 \rightarrow \text{Li}_{1-x}\text{CoO}_2 + \text{Li}_x\text{C}_6 \text{ (actual)}
\]
Discharge

• Overall reaction during discharge

\[\text{CoO}_2 + \text{LiC}_6 \rightarrow \text{LiCoO}_2 + \text{C}_6 \]
Thermal Runaway

- **Overcharge**
 - Exothermic reaction of oxidized positive electrode material with electrolyte

- **High ambient temperature**
 - SEI (solid electrolyte interphase) decomposition at temperature 90 to 120 °C

- **Short circuit**
 - Internal
 - External

- **High charge or discharge current**
Formation of SEI

- Lithium ion battery is assembled inside a dry room (does not need a dry box w/inert atmosphere) with lithium ions impregnated in the positive electrode (the smaller electrode).
- During the first charge, lithium ions are transferred from the positive to the negative electrode and form lithium metal.

Capacity determined by the positive electrode.
Formation of SEI

- The electrolyte, ethylene carbonate (EC), is **not thermodynamically stable** with lithium metal.
- SEI is formed on carbon or graphite particles during the first charge (Li active material wasted).
- SEI properties:
 - SEI has porous structure (more porous if SEI formation steps are not optimized).
 - SEI is ionic conductor (electronic insulator).

\[
\text{Li}^+ + \text{C}_6 + \text{e} \leftrightarrow \text{LiC}_6
\]
Thickening of SEI (Failure Mode)

• Charge discharge cycles
 – Volume changes in the carbon or graphite particles crack SEI and expose fresh Li to electrolyte (EC)

• Storage (calendar life)
 – Ethylene carbonate (EC) diffuse through SEI (pores) and react with Li inside SEI

\[\text{Li} + \text{EC} \rightarrow \text{thicker SEI} \]
(capacity loss & high impedance → rate capability loss)
Advantages and Disadvantages

• Advantages
 – Very high energy and power
 – Excellent charge retention

• Disadvantages
 – Safety concerns
 – High cost (control systems)
 – Lithium deposition during charge at low temperature
 – Short calendar life
New Development
(Positive Electrode)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Material</th>
<th>E_{oc}</th>
<th>Capacity</th>
<th>Safety</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layered oxides (2D)</td>
<td>LiCoO$_2$</td>
<td>3.6 to 3.7</td>
<td>151 Ah/kg</td>
<td>Acceptable</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Li(Co-Ni)O$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LiCo${1/3}$Ni${1/3}$Mn$_{1/3}$O$_2$ (L-333)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinel (3D)</td>
<td>LiMn$_2$O$_4$</td>
<td>3.7</td>
<td>119 Ah/kg</td>
<td>good</td>
<td></td>
</tr>
<tr>
<td>Olivine (1D)</td>
<td>LiFePO$_4$</td>
<td>3.4</td>
<td>161 Ah/kg</td>
<td>best</td>
<td></td>
</tr>
</tbody>
</table>

- Spinel is more proven than olivine except a high temperature
- Spinel has relatively lower capacity (119 vs. 150 or 160 Ah/kg for other materials) and solubility problems
- Olivine has very low conductivity
New Lithium Iron Phosphate Cells (CALB, Thunder Sky, GBS)

<table>
<thead>
<tr>
<th>Battery Types</th>
<th>Capacity (Ah)</th>
<th>Nominal Voltage (V)</th>
<th>Weight (kg)</th>
<th>Practical Specific Energy (Wh/kg)</th>
<th>Operating Thermal Ambient (Discharging) °C</th>
<th>L x B x H (mm)</th>
<th>Volume L (m³)</th>
<th>Energy Density (KWh/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA40FM</td>
<td>40</td>
<td>5.2</td>
<td>1.6</td>
<td>80.0</td>
<td>-20 ~ 55</td>
<td>129 x 50 x 150</td>
<td>9.7 x 10⁻⁴</td>
<td>152</td>
</tr>
<tr>
<td>CA50FM</td>
<td>50</td>
<td>5.2</td>
<td>1.8</td>
<td>83.9</td>
<td>-20 ~ 55</td>
<td>127 x 42 x 116</td>
<td>11 x 10⁻⁴</td>
<td>145.5</td>
</tr>
<tr>
<td>CA100FM</td>
<td>100</td>
<td>5.2</td>
<td>3.8</td>
<td>83.9</td>
<td>-20 ~ 55</td>
<td>264 x 64 x 185</td>
<td>25 x 10⁻⁴</td>
<td>114.5</td>
</tr>
<tr>
<td>CA160FM</td>
<td>160</td>
<td>5.2</td>
<td>5.5</td>
<td>90.5</td>
<td>-20 ~ 55</td>
<td>261 x 72.5 x 280</td>
<td>26.5 x 10⁻⁴</td>
<td>156.5</td>
</tr>
<tr>
<td>CA400FM</td>
<td>400</td>
<td>5.2</td>
<td>15.7</td>
<td>93.4</td>
<td>-20 ~ 55</td>
<td>451 x 72 x 285</td>
<td>85.5 x 10⁻⁴</td>
<td>156.0</td>
</tr>
</tbody>
</table>
New Development
(Negative Electrode)

• Spinel negative electrode (Altair)
 – Lithium titanate ($\text{Li}_4\text{Ti}_5\text{O}_{12}$)

 • Advantages
 – At lower voltage (~ 2.5 V) lithium is thermodynamically stable in electrolyte \(\implies \) no SEI
 – Rapid charge and discharge
 – Extremely long cycle life ($> 20,000$)

 • Disadvantages
 – Lower voltage (2.5 V)
 – Low electronic conductivity (additives)

A supercapacitor!
Battery V.S. Supercapacitor

Gasoline
Battery V.S. Supercapacitor

Supercapacitors VS. Lithium Batteries

- Commercial supercaps
- Nickel-Carbon supercap
- Graphene-Based supercap
- CALB iron phosphate battery
- Altair (国轩) titanate battery

Specific power (kW/kg)

Specific energy (Wh/kg)
Summary (Three Batteries)

- **Lead acid battery**
 - Low energy, < 40 Wh/kg
 - Moderate power, > 200 W/kg
 - Short life (deep discharge cycle), ~ 400 EV cycles
 - Low cost, ~ $150/kWh

- **Nickel metal hydride battery**
 - Moderate energy, < 100 Wh/kg
 - High power, > 1000W/kg
 - Long life, ~ 2000 EV cycles
 - High cost, ~ $1000/kWh (cell)

- **Lithium ion battery**
 - High energy, < 200Wh/kg
 - High power, > 1000W/kg
 - Long life, ~ 2000 EV cycles
 - High cost, ~ $ 400/kWh (control system)
Outline

• Introduction to batteries
• Equilibrium and kinetics
• Various secondary batteries
 • Lead acid batteries
 • Nickel metal hydride batteries
 • Lithium ion batteries

 ➤ Applications
 ➤ Electric vehicles
 ▪ Hybrid electric vehicles
Electric Vehicles

• History of electric vehicles
 – Electric motor demonstrated in 1832
 – Planté invented lead acid batteries in 1860
 – Electric vehicles were more popular than vehicles with internal combustion engines early 20th century (from 1900 to 1912)
 • 30,000 electric vehicles in US
 • 200,000 electric vehicle worldwide
 – The invention of battery powered starter (1911) wiped out electric vehicles after 1920
Early Electric Vehicle

- Ayrton & Perry EV (1882)
 - Ten lead acid battery cells (200 pounds)
 - Peak power output ➞ 400 Watts
 - Range ➞ 10 ~ 25 miles
 - Speed ➞ 10 mph
Electric Vehicle Speed Record

Jenatzy electric race car sets world speed record at 61 mph (1899-1902)
Electric Vehicles

• Renewed interests on electric vehicles
 – Uncertainties on the supply of petroleum based fuels
 – High price of petroleum based fuels
 – Improved technologies on batteries

• Global opportunities
 – More opportunities in countries such as China and India
 • Less or no crude oil reserves compared to the US
 • More city driving
 • Shorter range requirements
Renewal of Electric Vehicles

Tesla
Chinese Electric Vehicles

Build Your Dreams (BYD)
GM Chevy Volt

- Years in development: 4
- Battery range: 40 miles
- Supplemented by onboard gas generator
- Passengers: 4
- Price: $40000
Nissan Leaf

- Years in development: 4
- Battery range: 100 miles (100% electric, 0 emissions)
- Passengers: 4
- Price: $32780
Chinese Concept Electric Vehicles
Indian Electric Vehicles
USABC Goals for EV Batteries

<table>
<thead>
<tr>
<th>Parameter (Units) of fully burdened system</th>
<th>Minimum Goals for Long Term Commercialization</th>
<th>Long Term Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Density (W/L)</td>
<td>460</td>
<td>600</td>
</tr>
<tr>
<td>Specific Power – Discharge, 80% DOD/30 sec (W/kg)</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Specific Power – Regen, 20% DOD/10 sec W/kg</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Energy Density – C/3 Discharge Rate (Wh/L)</td>
<td>230</td>
<td>300</td>
</tr>
<tr>
<td>Specific Energy – C/3 Discharge Rate (Wh/kg)</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Specific Power/Specific Energy Ratio</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Total Pack Size (kWh)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Life (Years)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cycle Life – 80% DOD (Cycles)</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Power & Capacity Degradation (% of rated spec)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Selling Price – 25,000 units @ 40 kWh ($/kWh)</td>
<td><150</td>
<td>100</td>
</tr>
<tr>
<td>Operating Environment (°C)</td>
<td>-40 to +50</td>
<td>-40 to +85</td>
</tr>
<tr>
<td>Normal Recharge Time</td>
<td>6 hours (4 hours Desired)</td>
<td>3 to 6 hours</td>
</tr>
<tr>
<td>High Rate Charge</td>
<td>20-70% SOC in <30 minutes @ 150W/kg (<20min @ 270W/kg Desired)</td>
<td>40-80% SOC in 15 minutes</td>
</tr>
<tr>
<td>Continuous discharge in 1 hour - No Failure (% of rated energy capacity)</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>
Specific Energy VS Power for Different Batteries

maximum discharge current high energy type: typical: 2C rate
maximum discharge current high power type: typical: 10 – 40 C rate
Specific Energy VS Power (with the same capacity)

High Specific Power Cell

High Specific Energy Cell

1 tab

2 tabs

terminal

1 tab

2 tabs

terminal

terminal

+ - + - + - + -

+ - - - - - - -

+ - - - - - - -

+ - - - - - - -

+ - - - - - - -

+ - - - - - - -

+ - - - - - - -

+ - - - - - - -
Specific Energy VS Power

High Specific Power
- Bias power at the cost of energy
- Smaller particles, lower density
- Thinner electrodes
- Thicker current collectors (minimize IR)

High Specific Energy (Range)
- Bias energy at the cost of power
- Larger particles, higher density
- Thicker electrodes
- Thinner current collectors (more active material)
Battery Design for EV (Example)

• Method I: Estimate force required to move the vehicle

\[F = mgC_r + \frac{1}{2}\rho C_D A v^2 + ma + mg\sin(\theta) \]

- \(C_r \): coefficient of rolling resistance
- \(C_D \): Coefficient of air drag
- \(\rho \): Density of air
- \(A \): Cross section of the vehicle
- \(\theta \): Slope of the road

• Calculate power and energy required to drive the vehicle for 200 km

Power \(P = F \times v \) (velocity)

Energy = \(\int P \, dt \)

(integration from time \(t = 0 \) to \(T \) for driving 200 km)

Total energy (Wh) required for the battery pack to drive 200 km
Battery Design for EV (Example)

- Use the empirical equation
 \[\text{Range (km)} = \left(\frac{\epsilon}{e} \right) \times F_b \]
 \(\epsilon \): Usable battery specific energy (Wh/kg)
 \(e \): Specific weight consumption (Wh/(kg*km))
 \(e = 0.11 \) for a normal car driving on flat terrain
 \(F_b \): Battery fraction

- For the battery pack
 \(\epsilon = 150 \) Wh/kg (lithium ion battery)
 \(F_b = \frac{250}{1500} = 0.167 \)
 \(\text{Range} = (150 / 0.11) \times 0.167 = \sim 220 \text{ km} \)
 \((150 \text{ Wh/kg} \times 250 \text{ kg} = 37.5 \text{ kWh}) \)
Battery Design for EV (Example)

- Specific weighted consumption

<table>
<thead>
<tr>
<th>“e”</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>Well designed, low acceleration rail vehicles, and level conditions</td>
</tr>
<tr>
<td>0.07</td>
<td>GM prototype impact with superior aerodynamics but impractical features</td>
</tr>
<tr>
<td>0.09</td>
<td>Stop, start, low acceleration, slow speed bus on level roads, good weather, stops every 300 m</td>
</tr>
<tr>
<td>0.11</td>
<td>For a normal car with all-season tires, generally flat terrain</td>
</tr>
<tr>
<td>0.15</td>
<td>Smooth freeway driving, good weather, level terrain</td>
</tr>
<tr>
<td>0.20</td>
<td>Hilly terrain</td>
</tr>
</tbody>
</table>
Battery Design for EV (summary)

- Energy: ~ 40 kWh for 200 km range
- Power (acceleration): ~ 100 kW, 250kg (400 W/kg)
- Power (regenerative braking): ~ 40 kW (160 W/kg)
 - The efficiency of city driving is higher than that of highway driving
- Weight: battery fraction $F_b = 0.167$ (less than 1/3 vehicle weight)
- Life: 10 years and 100,000 miles
- Cost: competitive with internal combustion drive train

<table>
<thead>
<tr>
<th>Parameter (Units) of fully burdened system</th>
<th>Minimum Goals for Long Term Commercialization</th>
<th>Long Term Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Density (W/L)</td>
<td>460</td>
<td>600</td>
</tr>
<tr>
<td>Specific Power – Discharge, 80% DOD/30 sec (W/kg)</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Specific Power – Regen, 20% DOD/10 sec (W/kg)</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Energy Density - C/3 Discharge Rate (Wh/L)</td>
<td>230</td>
<td>300</td>
</tr>
<tr>
<td>Specific Energy - C/3 Discharge Rate (Wh/kg)</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Specific Power/Specific Energy Ratio</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Total Pack Size (kWh)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Life (Years)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cycle Life - 80% DOD (Cycles)</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>
Outline

• Introduction to batteries
• Equilibrium and kinetics
• Various secondary batteries
 • Lead acid batteries
 • Nickel metal hydride batteries
 • Lithium ion batteries
• Applications
 ■ Electric vehicles
 ➢ Hybrid electric vehicles
Introduction

- **Hybrid electric vehicle types**

<table>
<thead>
<tr>
<th>Types</th>
<th>Main Attributes</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-1</td>
<td>Stop, power for idle loads, crank ICE</td>
<td>VRLA</td>
</tr>
<tr>
<td>Micro-2</td>
<td>Micro-1 plus regenerative braking</td>
<td>VRLA</td>
</tr>
<tr>
<td>Mild-1</td>
<td>Micro-2 plus lunch assist</td>
<td>VRLA</td>
</tr>
<tr>
<td>Mild-2</td>
<td>Mild-1 plus limited power assist</td>
<td>VRLA, NiMH</td>
</tr>
<tr>
<td>Moderate</td>
<td>Mild-2 plus full power assist</td>
<td>NiMH</td>
</tr>
<tr>
<td>Strong</td>
<td>Moderate plus extended power assist (limited electric drive)</td>
<td>NiMH</td>
</tr>
<tr>
<td>Plug-in HEV</td>
<td>Strong plus extended electric drive</td>
<td>NiMH, Li-ion</td>
</tr>
</tbody>
</table>

VRLA: Valve regulated lead acid battery
NIMH: Nickel metal hydride battery
Battery Design with Higher Power Output

- Thinner electrodes and separators
- More electrodes in parallel
- Shorter aspect ratio
- Thicker and heavier current collectors
- Conductive additives mixed with active materials in electrodes