Home / Blog / Using oxygen as bits

Using oxygen as bits

Researchers are still looking for ways to store data in denser, cheaper and faster ways as more and more data are being produced.
At Rice University a team of researchers has found a way to use the displacement of oxygen atoms by an electric field as a way to store 0’s and 1’s.
Researchers have created a 250nm thick sandwich of multilayers of tantalium, tantalium oxyde, platinum and graphene (deposited on a silicon oxyde) that when subjected to an electric field cause the displacement of oxygen atoms. This displacement changes the electrical characteristics of the material from a ohmic device (where current can flow in both directions) to a Schottky junction, a diode (where current can flow in just one direction).  This creates a difference that can be associated to the values of 0s and 1s.
The architecture requires only two electrodes per circuit, whilst present silicon oxyde memories requires three electrodes, and this makes for denser storage and for an easier stacking in 3D architectures. In addition it requires 100 times less energy than conventional memories providing a further plus (heat dissipation in storage is not that important, as it is in mciroprocessors, since you, statistically, seldom access the same bit and there is no accumulation of heat that needs to be dissipated, but power consumption means cost and therefore is important).
The electrodes are made of platinum (see the figure) and by applying the voltage oxygen atoms migrate from the tantalium oxyde (a semiconductor) to the graphene layer, that acts as a barrier to both oxygen atoms on one side and platinum atoms on the other, leaving behind tantalium (a metal having ohmic characteristics). 
According to researchers this new kind of solid state memory should not be far from industrial manufacturing.

About Roberto Saracco

Roberto Saracco fell in love with technology and its implications long time ago. His background is in math and computer science. He's currently the Chair of the Symbiotic Autonomous Systems Initiative of IEEE-FDC. Until April 2017 he led the EIT Digital Italian Node and up to September 2018 he was the Head of the EIT Digital Industrial Doctoral School. Previously, up to December 2011, he was the Director of the Telecom Italia Future Centre in Venice, looking at the interplay of technology evolution, economics and society. At the turn of the century he led a World Bank-Infodev project to stimulate entrepreneurship in Latin America. He is a senior member of IEEE where he leads the Industry Advisory Board within the Future Directions Committee. He teaches a Master course on Technology Forecasting and Market impact at the University of Trento. He has published over 100 papers in journals and magazines and 14 books. He writes a daily blog,  http://sites.ieee.org/futuredirections/category/blog/, with commentary on innovation in various technology and market areas.