

Agenda

Introduction

- -Overview of Load Bank Testing
- Benefits and Economics of Load Testing

Industry Trends

- IEEE Standards for Interconnection
- FERC Small Generator Interconnection
- Innovations in Load Testing
- Lessons Learned

Overview of Load Bank Testing

Load testing is done at multiple locations within a data center

Load Bank Testing- Utility Scale

Overview of Load Bank Testing

Load Banks: Generating Success

- The load testing goal in critical facilities is to balance the electrical and thermal loads
 - We have to check the electrical systems functionality AND the HVAC system's performance in keeping the center cool.
 - Every component and connections are tested in advance

Overview of Load Bank Testing

Commissioning tests ensure equipment is rated, specified and installed properly	 Performs as system designer intended
Regular load testing ensures proper operation of equipment	 Allows failure prediction to occur during the test, and not during an unintended outage
Over time, as systems become more complex	 System test calibration ensures operation at all levels Future standards may recommend actual load testing to ensure performance and safety
Corrective Action Validation	 Load Testing Ensures validation or verification of corrective actions to failures in the facility Electric power system
ComRent	

What to Test - Facility Uptime Tiers

Global Leader in Load Bank Rentals and Service

8/1/2013

Benefits of Load Bank Testing

Data Center power system is a critical investment in total system reliability aimed at reducing business risk

8/1/2013

Benefits of Load Bank Testing in Critical Power Systems

Reduce Risk, Improved Reliability

Probability and frequency of failures (MTBF)

Improved Availability

 Availability is defined as the percentage of time that a system is available to perform its function(s)

Availability	Hours of Downtime* (*Based on a year of 8760 hours)
0.9	876
0.999	8.76
0.99999	0.0876
0.9999999	0.000876

Benefits of Load Bank Testing in Critical Power Systems

Validation of System Performance to Specification

- Systems need to perform at rated power with underlying assumptions
 - Power Factor
 - Altitude and climate

Lower Maintenance Costs

- Running an engine with minimal load causes residual fuel buildup.
 - Decreases the efficiency of the engine and reduces the useful life of critical parts.
- As a system evolves with updated software, firmware and replacement hardware
 - Systems need to be periodically calibrated

Reduced Business Risk

- Damage to Reputation
- Brand Impact

Benefits of Load Bank Testing in Critical Power Systems

Reduced Business Risk

60% of Data Center Failures Could be Prevented/Deferred through load testing.

Average total cost by root causes of the unplanned outage.

Benefits of Load Bank Testing in Critical Power Systems (Cont'd)

Uncover Random Failure Problems not diagnosed by sub system

ComRent®

Benefits of Load Bank Testing in Critical Power Systems (Cont'd)

A well run full load test can Reduce Project Costs

- Faster setup, testing and takedown
 - Reduced overall time for commissioning test (days)
 - Reduced load bank setup time (hours)
 - Less checking and reworking of connections by Installer Faster set up of downstream tests with buss track adapters and rack mounted load banks
 - Less changeover when switching tests to multiple service providers
- Reduced labor from stakeholders involved in commissioning
 - Generator, UPS Mfr.
 - General Contractor, Electrical Contractor
 - Consulting Engineer
 - Facilities Owner/Manager

Benefits of Load Bank Testing in Utility Substations (Cont'd)

- Substations on new circuits or that are great distance from active feeders can benefit from load bank testing during commissioning
 - Energize circuit with sufficient current to allow CT's to test protective relay settings and operation
 - Also test communication systems
- Utility ratemaking process can allow this expense to be capitalized

Industry Trends Distributed Energy Resource Interconnection

Industry Trends Distributed Energy Resource Interconnection

Standards

- IEEE 1547-2003 Standard for Interconnecting Distributed Resources to the EPS
 - Today, IEEE1547-2003 Restricts Voltage, Frequency Regulation or Power Factor Correction at the PCC
 - Changes complete and in ballot draft.
 - Wording added to allow Voltage, Frequency Regulation (by injecting reactive Power) and Power Factor Correction in collaboration with EPS operator. If disputes arise, a full load t
 - Working Group initiated to develop IEEE1547.1 test procedures

Global Leader in Load Bank Rentals and Service

Key:

Current Situation
Probable 2013 Activity

Industry Trends Distributed Energy Resource Interconnection

"Small" Generator Project Approval Rules

- FERC Proposed Reforms for Small Generator Interconnection [Docket No. RM13-2-000]
 - 1. Allow customers to request a pre-application report to evaluate opportunity. No review exists today.
 - Revise 2 MW threshold for participation in the Fast Track Process (FTP) increased to a limit of 5 MW
 - 3. Revise the customer options supplemental review for projects that fail FTP criteria. **No feedback or follow-up allowed.**
 - 4. FERC's pro forma Small Generator Interconnection Procedures (SGIP) revised to allow customers an opportunity to provide written comments on the upgrades that are necessary for the interconnection (transmission provider has total say)

Key:

Current Situation

Probable 2013 Activity

Industry Trends Smart Grid Interoperability of DR with EPS

Smart Grid Interoperability

- IEEE P2030.2 Guide for the Interoperability of Energy Storage Systems
 - -First standard using the IEEE 2030 Smart Grid Interoperability model. I am Working Group Chair
 - -Targeting ballot by end of 2013.

Global Leader in Load Bank Rentals and Service

Key:

- Current Situation
- Probable 2013 Activity

Industry Trends Smart Grid Interoperability of DR with

IEEE 2030-2011 - Guide for Smart Grid Interoperability

 More commonality and completeness in communications and information technology requirements

Common

Industry Trends Special Standards

Special Cases

- –UL Standards Technical Panel 1741 (Inverters and Converters)
 - Type Testing Standard for Inverters and Converters
 - Revision due in 2013
- –UL Standards Technical Panel UL 6171 Standard for Wind Turbine Converters and Interconnection Systems Equipment (Startup in late 2013)
 - No standards exist today.
 - Clarity on interconnection and load testing requirements.

Key:

Current Situation

Probable 2013 Activity

Load testing at commissioning and maintenance intervals reduce the incidence of catastrophic failures.

Arc Flash Explosion

Facility Damage

Circuit Breaker

Bus Bar

Data Center Integration Testing

- -THE PROBLEM:
 - Data center testing occurs months before servers are installed
 - Owners need to ensure the complex systems operate as intended.

Power System

- Generator Individual
- Generators in Parallel
- Automatic Transfer Switch
- UPS Modules
- Power Distribution Units (PDU's)
- Remote Power Panel (RPP's)
- Overhead or under floor distribution or Bus System
- In Rack Power Strips

HVAC

Heating Ventilation Air Conditioning

- Chillers
- Cooling Towers
- CRAC Units Computer Room Air Conditioners
- Humidity controllers
- Economizers (outside air blending)

ComRent[®]

▶ IST Integrated Systems Test

- Combines all HVAC and Power Systems and applies load to the data center as a whole.
- As the load banks produce electrical load, it is discharged as heat. The cooling system is tested, Tuned and Balanced.
- System failure modes are explored and documented.

Global Leader in Load Bank Rentals and Service

ComRent

Critical Facility Power Quality

- -THE PROBLEM
 - Power Quality Measurement requires costly, equipment that takes a high level of training to interpret results.
 - Equipment suppliers pointing fingers when problem occurs

Power Quality Measurement

Technology can provide comprehensive results with little test time

Medium Voltage Feeds and Emergency Generators – THE PROBLEM

- Many data centers use Medium Voltage Utility Feeds and employ Medium Voltage Emergency Generators
- Load Testing with low voltage load banks results in complicated connections, space constraints and sloppy job site appearance.

Backup Power/ Grid Interconnection

- CR922A 5MW MV Load Bank: Transportable medium voltage load bank
 - No Transformer
 - CAPACITY: 5MW @13,800 VAC
 - Easy set up
 - Linkable for larger loads
 - Reduces time & labor cost

High Voltage Substations

- -THE PROBLEM
 - Little scheduling flexibility when commissioning substation
 - Highly constrained resources that set up and test communications and protection systems make project management difficult

Substation Pre-Commissioning

 Bring in partial load sufficient to energize CT's to test communications protective relays

RECENT COMRENT PROJECTS: CHEVRON OIL FIELD – 3 EACH 3MW SOLAR GAS TURBINES

Provided: 9 MW's Resistive / Reactive .8PF at 12470 volts

Load Testing Best Practices SCE Wind Hub Substation

Serving renewable energy Solar and Wind Farms in Southern California- F Provided :26 MW's of MV load (@13.8kv) Load Banks, Switch Gear and op

Load Testing Best Practices Copper Mine, Kingman, AZ

50MW GE Natural Gas Turbine Generator

³⁹ Provided: 42MW's of MV load (@13.8kv), transformers, switchgear, cables.

Critical Facility Load Testing and Commissioning – **THE PROBLEM**

- Load testing can take several days at a site and requires skilled labor to be available to control load and load steps
- Often the sites are considered unsafe while load is being energized

Wi-Fi / Enhanced Communications:

- IP addressable load banks
- Manage all load banks via a single mobile device
 - In the rack
 - In the aisle
 - In the room
- Reduces Test Time
- Reduced labor cost
 ComRent[®]

Global Leader in Load Bank Rentals and Service

Customized MS Windows GUI

Android Smartphone Interface Application

Lessons Learned

- Load testing is a critical and beneficial aspect of building commissioning and maintenance.
- Innovations can make testing safer and faster
- Bottom line is effective power system commissioning and testing saves you project costs and reduces operating expense

