The Design Process – EMC Considerations for Successful Development and Delivery

Paul Stover; NCE Compliance Test Engineer, ADTRAN
February 16, 2012

- Delivery of the final product along with compliant EMC performance can be challenging.
- We’ll examine several points associated with the development process that can lead to successful delivery – or to disaster.
- Presented will be cause and effect examples of these points and how disaster can be prevented.
• Topics

 • Design Process overview

 • Where compliance fits
 • Concept through delivery

 • Examples of gotchas that could have been avoided
The Design Process – EMC Considerations for Successful Development and Delivery
February 16, 2012

- Target market
- Market requirements
The Design Process – EMC Considerations for Successful Development and Delivery
February 16, 2012

Concept
- Target market
- Market requirements

Development
- Design
 - Hardware
 - Software
 - Documentation (manuals etc.)

Time to Market
The Design Process – EMC Considerations for Successful Development and Delivery
February 16, 2012

Concept
- Target market
- Market requirements

Development
- Design
 - Hardware
 - Software
 - Documentation (manuals etc.)

Qualification
- Testing
 - Mitigation
 - Approvals
 - Documentation

Time to Market
The Design Process – EMC Considerations for Successful Development and Delivery
February 16, 2012

- Concept
 - Target market
 - Market requirements
 - Design considerations
 - Can we do it?

- Development
 - Design
 - Hardware
 - Software
 - Documentation (manuals etc.)

- Qualification
 - Testing
 - Mitigation
 - Approvals
 - Documentation

- Sales
 - Revenue
 - $$$$$$
• Target Market
 • Industry Specific
 • Commercial
 • Automotive
 • ITE
 • Defense/Aerospace/Government
 • Domestic
 • US/Canada
 • International
 • European Union
 • Eastern Europe/Russia
 • Mexico/Latin America/Asia Pacific
• Market Requirements
 • Testing affected heavily – can affect the overall success
- **Compliance role during Conceptual Phase**
 - Understanding of the requirements for a given market or industry
 - Testing, documentation and marking/labeling
 - You want to sell it where?!
 - Based on these requirements, what are the potential ramifications to the overall design?
 - Hardened for immunity
 - Levels and type
 - **Costs**
 - Hardware implementation
 - Testing/Market entry
 - Payola, payola
• So we know what we want to make and where we’d like to sell it, what’s next?

• Development
 • Hardware
 • Software (Really?)
 • Documentation (may be language specific)

• Time to Market (ever present concern)
 • Varies with complexity of product and industry
 • Affects the bottom line
Executive Management

Mid-Level Management

Compliance
• **Development** - Where we should spend most of our time
 • Unfortunately this isn’t always the case (testing and mitigation)
 • **New Product considerations**
 • Physical/Mechanical
 • Shielded/unshielded enclosure
 • Circuit board design
 • Schematic review
 • Artwork review
 • Interconnecting cabling
 • Shielded/unshielded
 • Length and construction / UTP vs. Cat 5e
 • Installation Environment/Application
 • Residential/industrial
 • Indoors/outdoors
 • Hot/cold
• **Compliance Role during Development**
 • Based on device conceptual result
 • Provide guidance with regard to physical arrangement, construction, bonding and grounding
 • Review schematics and provide guidance early in the process
 • Component placement/selection
 • Compartmentalization
 • PCB stack up
 • Review PCB artwork revision (a) prior to prototype construction
 • Verify stack up and PDN design
 • Signal routing/termination
 • As appropriate address cabling and environmental issues
 • This may be industry driven
• **Example # 1**
 • AC/DC converter
 • 120V/60Hz in 48VDC out at 48W
 • Metal housing
 • 2 attaching cables
 • AC mains unshielded ~3ft* = 1/4λ @ 80MHz
 • DC output unshielded ~2ft** = 1/4λ @ 125MHz
 • Approximate size 1.5”H x 3”W x 4.5”L
 • SMPS in the 100-200kHz range

• **Class A Device**
• Not reviewed by Compliance Engineering – processes were not in place for ready review.
Example #1 = +26dB pk over the Class A Limit
Comfortable margin to Class A limit
• Example # 1

• Resolved with
 • 100+ plots later......
 • Addition of common mode filtering in the form of a wire-wound choke and ferrite beads
 • Layout change to PCB (x2-3)
 • Minor construction changes

• Functional design was great but development at this time did not include Compliance schematic/artwork review
• Later this device was successfully developed into a 100W and greater version w/o significant difficulty.
• Example # 2
 • Telecom service delivery platform
 • -48VDC
 • Sealed metal housing with shielded direct burial cables
 • Four PCB’s internally connected with header pins
 • *Original* approximate size is 6”L x 24”W x 30”H

• Class A Device
• The original device was compliant with the Class A limits
• Conversion of the device to a 2U high 19” rack mount configuration with unshielded cables and two PCB’s internally.
• Was the ‘same’ schematically
Previous unit performance
Example #3 = ~+18dB pk over the limit; Does it look the same?
Comfortable margin to Class A limit – looks more like the original
Example #2

Resolved with
 - Removal of 3-4 components
 - Relocation of Common mode filter closer to EUT input (board spin)

Design Engineering did not include Compliance in the schematic review as it was derived (copied) from a compliant product.

Compliance engineering was not included in the mechanical design or board layout phase of development.
• Example # 3
 • Custom high-end computer
 • Built from a combination of off-the-shelf devices (compliant)
 • Metal housing/dual display
 • 120V/60Hz – 240/50Hz auto-ranging supply
 • Attaching cables
 • PC peripherals
 • AC input cable
 • Approximate size 18”W x 24”L x 18”H

• Class A Device
• In-house compliance resource with no test capability
Example #1 = ~+6dB pk over the Class A Limit
Comfortable margin to the Class A limit
• Example #3

• Resolved with
 • Replacement of off-the-shelf power supply with a compliant power supply.
 • Treatment of shielded monitor cabling

• Power supply provided by Vendor A was thought to comply but in actuality did not.
• “Trust, but verify” – Ronald Reagan
• Example # 4
 • Custom computing/measuring device
 • Built from a combination of off-the-shelf devices and custom PCB’s
 • 120V/60Hz AC to 12VDC wall-wart converter
 • Off the shelf 12VDC to 5VDC converter internally
 • Plastic housing w/touch screen
 • Attaching cables
 • Custom measuring device in plastic housing
 • PC peripherals
 • AC/DC input cable
 • Approximate size 8’ cube
 • Class A Device
 • Start-up company with no in-house Compliance resource
Example #1 = +10dB pk over the Class A Limit
Marginally passes EU limit = ~3dB for USA
• Example # 4

• Resolved with
 • Re-positioning of internal components
 • Replaced off-the shelf DC-DC converter with PCB mounted regulator (this saved ~$80 in parts)
 • Used CE Mark approved lump-in-line for AC-DC conversion
 • Layout changes to custom PCB’s
 • Added a plethora of ferrite cores to internal peripheral cabling

• Compliance involvement didn’t begin until the unit was ‘ready’ for qualification prior to sale.

• No
• Problem solved; what now?
• Qualification
 • Mitigation
 • *If* one falls through the cracks during development, work with the lab
 • Testing
 • Relationship with accredited, competent laboratory facilities
• Approvals
 • Test plan should be developed to gain the widest reach of approvals in the most cost efficient way
• Documentation
 • Accurate Test reports
 • Declaration of Conformity/Labeling
 • Registration and Payola
Example # 5

Testing of product
- A2LA Accredited Test facility
- OATS with 3 and 10m capability
- Documented compliant NSA data
- Site registered and approved with the FCC

Class A Device
- Established company with in-house testing facilities
- Significant variation from expected result – variation from 3m distance to the 10m to great.
Laboratory Variations at 10m test distance - Vertical
• Example # 5

• Resolved with
 • Repair of discontinuity in ground plane at ~4m distance

• Anomaly had gone undetected at test facility – use of a noise source for site validation demonstrated the issue.

• Other issues detected at laboratories
 • Excessive moisture in Ground Plane structure
 • Cabling issues
• Compliance Role in Qualification/Approval
 • Mitigation
 • Emission/Immunity failure resolution
 • Testing
 • Coordination and monitoring of services provided
 • Approvals and Documentation
 • Accurate Test reports
 • Correct representation of the product and how it was tested
 • Declaration of Conformity/Labeling
 • CE MARK
 • Registration and Payola
 • NOM/VCCI and others
• **Summary**

 • Compliance processes aren’t a hurdle to jump over but an engineering resource for success

 • Involvement early in the process will shorten time to market and improve reliability – the earlier the better

 • Compliance costs overall will be reduced

 • Compliance people really aren’t so bad after all
What a day!