
Giuseppe Bianchi

Data Plane Programmability
the next step in SDN

Giuseppe Bianchi
CNIT / University of Roma Tor Vergata

Credits to: M. Bonola, A. Capone, C. Cascone, S. Pontarelli, D. Sanvito,
M. Spaziani Brunella, V. Bruschi

EU Support:

Giuseppe Bianchi

Once upon a time…

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Switch

Data-plane

Data-plane

Data-plane

Control-plane
Programmable

switch

Traditional networking:
Management nightmare

Software-Defined Networking

dumb, fast

smart, slow, (logically) centralized

API to the
data plane

(e.g., OpenFlow)

2008: SDN to the rescue

Giuseppe Bianchi

OpenFlow: a compromise
[original quotes: from OF 2008 paper]

Best approach: “persuade commercial name-brand
equipment vendors to provide an open, programmable,
virtualized platform on their switches and routers”
Plainly speaking: open the box!! No way…

Viable approach: “compromise on generality and seek a
degree of switch flexibility that is
High performance and low cost

» We already had commodity TCAMs / hash tables!

Capable of supporting a broad range of research innovation
» L2/L3 forwarding, Firewall, etc: at different layers, but all based on flow tables

 Consistent with vendors’ need for closed platforms
» Who cares how the flow table is internally implemented?!

Very, VERY simple – e.g. compare to ForCES. But enough do to something non-trivial

Giuseppe Bianchi

OpenFlow’s key insight:
match/action abstraction

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Matching
Rule Action

1. FORWARD TO PORT
2. ENCAPSULATE&FORWARD
3. DROP
4. …
Extensible

Vendor-implementedProgrammable logic

Pre-implemented matching engine

Giuseppe Bianchi

The SDN/OpenFlow Model

Networking-specific programmable device
OpenFlow (HW/SW) switch

Match 1  Act A

Match 2  Act B

(flow-mod)

Pre-
implemented

actions

Match
primitives

Controller

Run-time deployment

OpenFlow’s platform
agnostic «program»:
(abstract) Flow table

Match 1  Act A

Match 2  Act B

Not yet «programmed»

Very elegant and performing
Switch as a «sort of» programmable device
Line-rate/fast-path (HW) performance
Can be «repurposed» as switch, router,

firewall, etc
…but…
Static rules
All intelligence in controller
Lack of flexibility and espessivity:

more of a config than a program!

Giuseppe Bianchi

The SDN/OpenFlow Model

Networking-specific programmable device
OpenFlow (HW/SW) switch

Match 1  Act A

Match 2  Act B

(flow-mod)

Pre-
implemented

actions

Match
primitives

Controller

Run-time deployment

OpenFlow’s platform
agnostic «program»:
(abstract) Flow table

Match 1  Act A

Match 2  Act B

Not yet «programmed»

Very elegant and performing
Switch as a «sort of» programmable device
Line-rate/fast-path (HW) performance
Can be «repurposed» as switch, router,

firewall, etc
…but…
Static rules
All intelligence in controller
Lack of flexibility and espessivity:

more of a config than a program!

Consequence
any «smart program» must be delegated to

controller  latency!
O(50ms) switch-controller latency = 10 million packets @ 100 gbps

Aftermath
Openflow: was the original SDN enabler…

… but now is the SDN sore spot!

Giuseppe Bianchi

2012: Network
Functions Virtualization

to the rescue!
Independent

Software Vendors

BRAS

Firewall

DPI

CDN

Tester/QoE
monitor

WAN
Acceleration

Message
Router

Radio Network
Controller

Carrier
Grade NAT

Session Border
Controller

Classical Network Appliance Approach

PE Router

SGSN/GGSN

Generic High Volume
Ethernet Switches

Generic High Volume Servers

Generic High Volume Storage

Orchestrated,
automatic
remote install

hypervisors

Adapted from Bob Briscoe, BT

Giuseppe Bianchi

The NVF model (opposite extreme than SDN/OF)

General purpose computing platform
X86, ARM, etc

deploy VM = migrate
BOTH NF program AND
prog. environment

Virtualization (e.g. hypervisor)

VM

Run-time deployment

Specific
NF

Ordinary SW program
(possibly closed src)

 Ultra flexible
 C/C++ coding

…but BIG price to pay…
 Poor performance (slow path)

 Point is: NFV is «just» a software
implementation of an NF
 Not nearly a programming abstraction!!
 As efficient as the implementor makes it efficient!

take an old crappy code, wrap it in an
VM/container/unikernel, and here is your
«new» VNF...

Giuseppe Bianchi

Fact: CPU-based SW is not a panacea
(especially when performance is key)

Source (plot only): Nick McKeown, 2015, Stanford

Moreover, worth to keep in mind: 1 64B packet @ 100 gbps = 5 ns = 100cm signal propagation (@ 2/3 c)

Giuseppe Bianchi

Towards a new model
 Same SDN-like model

 Based on abstractions
 Native line-rate
 Portable!! (platform independent)

 But much closer to the NFV
programming needs
 MUCH more expressive and flexible than

OpenFlow
 Price to pay:

 Need for network-specific HW/SW
«netlanguage processor»
 But still general purpose processor!

Networking-specific programmable device
(HW/SW) switch: not x86/ARM but a general purpose

netputing device!

Pre-
implemented

actions

Match
primitives

Not yet «programmed» Pre-implemented
«netlanguage»

execution engine
@ fast-path

(inject netlanguage script)

Controller

Run-time deployment

NF as script in
«netlanguage» (e.g. P4,

XFSM, more later)

Platform agnostic «program»
(key: more expressive programming
Abstraction than openflow!!)

Giuseppe Bianchi

Data-plane

Control-
plane

OpenFlow
switch

OpenFlow / SDN

 Forwarding rules

SMART!

DUMB!

Forwarding rules  forwarding behavior

Our view / SDN

Data-plane

Control-
plane

Extended
switch  Forwarding behavior:

 Forwarding rules AND
how they should change
or adapt to «events»

SMART!

SMART! Smart switches 
can dynamically
update flow tables
at wire speed

Central control 
still decides how
switches shall
«behave»

Describe forwarding behavior: requires stateful programming abstractions!

Giuseppe Bianchi

Data-plane

Control-
plane

OpenFlow
switch

OpenFlow / SDN

 Forwarding rules

SMART!

DUMB!

Forwarding rules  forwarding behavior

Our view / SDN

Data-plane

Control-
plane

Extended
switch  Forwarding behavior:

 Forwarding rules AND
how they should change
or adapt to «events»

SMART!

SMART! Smart switches 
can dynamically
update flow tables
at wire speed

Central control 
still decides how
switches shall
«behave»

Describe forwarding behavior: requires stateful programming abstractions!

Behavioral Forwarding in a nutshell:
Dynamic forwarding rules/states

some control tasks back (!) into the switch

(hard part: via platform-agnostic abstractions)

Giuseppe Bianchi

Towards data plane
programmability

Giuseppe Bianchi

OpenFlow evolutions
Pipelined tables from v1.1
Overcomes TCAM size

limitation
Multiple matches natural
Ingress/egress, ACL, sequential L2/L3 match, etc.

Extension of matching capapilities
More header fields
POF (Huawei, 2013): complete matching flexibility!

Openflow «patches» for (very!) specific processing
needs and states
Group tables, meters, synchronized tables, bundles, typed tables

(sic!), etc
Not nearly clean, hardly a «first principle» design strategy
A sign of OpenFlow structural limitations?

Giuseppe Bianchi

Programming the data plane:
The P4 initiative (July 2014)

SIGCOMM CCR 2014. Bosshart,
McKeown, et al. P4: Programming
protocol-independent packet processors
Dramatic flexibility improvements in packet processing

pipeline
Configurable packet parser parse graph
Target platform independence compiler maps

onto switch details
Reconfigurability change match/process fields

during pipeline
Feasible with HW advances
Reconfigurable Match Tables, SIGCOMM 2013
 Intel’s FlexPipeTM architectures

P4.org: Languages and compilers
Further support for «registry arrays» and counters meant

to persist across multiple packets
Though no HW details, yet

ACL

UDPTCP

L2S

L2D

IPV4

ETH
VLAN

IPV6

Table Graph

Giuseppe Bianchi

Programming the data plane:
The P4 initiative (July 2014)

SIGCOMM CCR 2014. Bosshart,
McKeown, et al. P4: Programming
protocol-independent packet processors
Dramatic flexibility improvements in packet processing

pipeline
Configurable packet parser parse graph
Target platform independence compiler maps

onto switch details
Reconfigurability change match/process fields

during pipeline
Feasible with HW advances
Reconfigurable Match Tables, SIGCOMM 2013
 Intel’s FlexPipeTM architectures

P4.org: Languages and compilers
Further support for «registry arrays» and counters meant

to persist across multiple packets
Though no HW details, yet

ACL

UDPTCP

L2S

L2D

IPV4

ETH
VLAN

IPV6

Table Graph

OpenFlow 2.0 proposal?

Stateful processing, but only «inside» a packet
processing pipeline!

Not yet (clear) support for stateful processing
«across» subsequent packets in the flow

“[…] extend P4 to express stateful processing”,
Nick McKeown talking about P4 @ OVSconf Nov 7, 2016

Giuseppe Bianchi

OpenState, April 2014
Our group, SIGCOMM CCR April 2014, “OpenState:

programming platform-independent stateful
OpenFlow applications inside the switch”
surprising result: an OpenFlow switch can «already» support

stateful evolution of the forwarding rules
With almost marginal (!) architecture modification

Our findings at a glance:
Any control program that can be described by a Mealy (Finite State)

Machine is already (!) compliant with OF1.3
MM + Bidirectional flow state handling requires minimal hardware

extensions to OF1.1+

Candidate for inclusion in as early as OpenFlow 1.6
Ongoing discussion on fine grained details

Giuseppe Bianchi

Our finding: if application can be
«abstracted» as a mealy Machine…

DEFA
ULT

Stage
1

Stage
2

Stage
3

OPEN

Port=6234
Drop()

Port!=6234
Drop()

Port!=5123
Drop()

Port=5123
Drop()

Port=7345
Drop()

Port=8456
Drop()

Port!=7345
Drop()

Port!=8456
Drop()

Port=22
Forward()

Port!=22
Drop()

Example: Port Knocking firewall
knock «code»: 5123, 6234, 7345, 8456  then open Port 22

Giuseppe Bianchi

… it can be transformed in a Flow Table!
MATCH: <state, port>  ACTION: <drop/forward, state_transition>

Plus a state lookup/update

state event

DEFAULT

STAGE-1

Port=5123

Port=6234

STAGE-2

STAGE-3

Port=7345

Port=8456

OPEN Port=22

OPEN

*

Port=*

Port=*

Match fields Actions

action Next-state

drop

drop

STAGE-1

STAGE-2

drop

drop

STAGE-3

OPEN

forward OPEN

drop

drop

OPEN

DEFAULT

IPsrc PortMetadata:
State-label

State DB

State DB

IpsrcOPEN

Ipsrc: ??

Giuseppe Bianchi

And “executed” inside a two stage
openflow-type pipeline

Flow key state
IPsrc= … …
Ipsrc= … …

… … …
… … …

IPsrc=1.2.3.4
IPsrc=5.6.7.8

STAGE-3
OPEN

IPsrc= no match DEFAULT
IPsrc= … …

State Table

… … …

IPsrc=1.2.3.4 Port=8456

1) State lookup

state event
DEFAULT
STAGE-1

Port=5123
Port=6234

STAGE-2
STAGE-3

Port=7345
Port=8456

OPEN Port=22
OPEN

*
Port=*
Port=*

XFSM Table

Match fields Actions
action Next-state

drop
drop

STAGE-1
STAGE-2

drop
drop

STAGE-3
OPEN

forward OPEN
drop
drop

OPEN
DEFAULT

IPsrc=1.2.3.4 Port=8456STAGE-3

2) XFSM state transition

IPsrc=1.2.3.4 Port=8456

OPEN

3) State update

write

Write: OPEN

1 «program» XFSM table for all flows
(same knocking sequence)

N states, one per (active) flow

Giuseppe Bianchi

Cross-flow state handling

MACdst MACsrc

Flow key state
48 bit MAC addr Port #

lookup
State Table

MACdst MACsrc

Flow key state
48 bit MAC addr Port #

update
State Table

state event
Port# *

action Next-state
forward In-port

XFSM Table

DIFFERENT lookup/update scope

Field 1 Field 2 Field N

Flowkey selector Read/write signal

Yes but what about MAC learning, multi-port
protocols (e.g., FTP), bidirectional flow handling, etc?

Giuseppe Bianchi

Beyond Mealy machines?
 Mealy machines: a huge step forward from (static)

OpenFlow, but still far from «true» programmability
 No «user-defined» variables
 No arithmetic operations
 No conditional execution

 Better abstraction: extended finite state machines (Open
Packet Processor, 2016, arxiv)
 Turing-complete
 Abstraction still based on matches (events) and actions

 A la OpenFlow, but with much more behavioral logic

 Can STILL be executed on the fast path!
 Proved with concrete architecture and HW implementation

 What you write (XFSM) is guaranteed to execute in bounded # of clocks
 No compiler on target… which may not compile…

 Multiple stateful processing stages can be pipelined
 As per OpenFlow Multiple Match/action pipelines

 Require new HW beyond OpenFlow

Giuseppe Bianchi

Open Packet Processor at a glance

1

Flow context retrieval
Tell me what flow the packet belongs to

and what is its state (and associated registries)

Giuseppe Bianchi

Open Packet Processor at a glance

Condition verification
Does the flow context respect

some (user defined) conditions?

2

Giuseppe Bianchi

Open Packet Processor at a glance

XFSM execution
Match current status and conditions and retrieve

next state and update functions (fetch packet actions)

3

Giuseppe Bianchi

Open Packet Processor at a glance

XFSM execution
Match current status and conditions and retrieve

next state and update functions (fetch packet actions)

3

Returns microinstructions (of a domain-specific
custom ALU instruction set) to be applied

Giuseppe Bianchi

Open Packet Processor at a glance

Execute m-instructions
Permits to embed user-defined computation in the pipeline

4

Giuseppe Bianchi

Open Packet Processor at a glance

And update state and registers for the next packet
Close the “computational loop” – no CPU involved

TCAM as state transition engine and ALUs as processing functions

5

Giuseppe Bianchi

Data plane programmability on
the rise…

2014 2015 2016 2017

OpenFlow

2008

RMT
[SIGCOMM ‘13]

OpenState
[CCR Apr ‘14]

FAST
[HotSDN ‘14]

P4
[CCR Jul ‘14]

BEBA EU proj

Design prin.
For parsers
[ANCS‘13]

Banzai/Domino
[SIGCOMM ‘16]

InSP
[SOSR ‘16]NetPaxos

[SOSR ‘15]

DC.p4
[SOSR ‘15]

NetASM
[SOSR ‘15]

Compilers
for RMT

[NSDI ‘15]

HULA
[SOSR ‘16]

HashPipe
[SOSR ‘17]

Dapper
[SOSR ‘17]

SwingState
[SOSR ‘17]

FlexSwitch
Power

[NSDI‘17]

St
at

el
es

s
St

at
ef

ul

OPP [arxiv ‘16]

BEBA EU: design platform agnostic programmable stateful data plane
 leveraging and extending OpenState, standardization target towards ONF

SuperFluidity EU proj

SUPERFLUIDITY EU: further steps in functional decomposition and actions’ programmability
 (see «smashing» paper @ 11 AM)

5G-PICTURE EU

5G-PICTURE EU: just started; whole WP on data plane programmability and exploitation in 5G

Giuseppe Bianchi

And smart NICs as well…

We need to talk
about NICs
[HotOS ‘13]

FlexNIC
[ASPLOS ‘15]

A billion RPS for KVS
[ISCA ‘15]

ClickNP
[SIGCOMM ‘16]

VFP
[NSDI ‘17]

Sm
ar

tN
IC

s

2014 2015 2016 2017

OpenFlow

2008

RMT
[SIGCOMM ‘13]

OpenState
[CCR Apr ‘14]

FAST
[HotSDN ‘14]

P4
[CCR Jul ‘14]

BEBA EU proj

Design prin.
For parsers
[ANCS‘13]

Banzai/Domino
[SIGCOMM ‘16]

InSP
[SOSR ‘16]NetPaxos

[SOSR ‘15]

DC.p4
[SOSR ‘15]

NetASM
[SOSR ‘15]

Compilers
for RMT

[NSDI ‘15]

HULA
[SOSR ‘16]

HashPipe
[SOSR ‘17]

Dapper
[SOSR ‘17]

SwingState
[SOSR ‘17]

FlexSwitch
Power

[NSDI‘17]

St
at

el
es

s
St

at
ef

ul

OPP [arxiv ‘16]

SuperFluidity EU proj 5G-PICTURE EU

Giuseppe Bianchi

Not only (classical) SDN, then!

An interface for virtual network
function (VNF) fast path
acceleration

VNF

slow path

fast path

Software forwarder

Virtual Machine VM

RAM

Virtual
forwarder

Software
Application

Programmable SDN Switch

SmartNIC

VM

Giuseppe Bianchi

Conclusions
 Platform-agnostic programming of control intelligence inside

devices’ fast path seems viable
 «small» OpenFlow extension – OpenState in (most likely) OpenFlow 1.6?
 TCAM as «State Machine processor»

OpenState Mealy Machines; OPP  full XFSM
without any slow path CPU

 What about programmable actions?
Not only P4; our proposal:tailored MIPS/VLIW (see talk @ 11 AM)

 Rethinking control-data plane SDN separation
 Control = Decide! Not decide+enforce!
 Data Plane programmability: delegate smart execution down in the switches!
 Back to active networking 2.0? (but now with a clearcut abstraction in mind)

 VNF offloading
 Program VNF fast path using data plane abstractions, and make it executable

«everywhere»  e.g. in smart HW NIC implementing OPP…

