Northern Canada AP/MTT Jt. Chapter

IEEE
//

Archive for the ‘News’ Category

Distinguished Lecturer: Dr. Andrea Alù, The University of Texas at Austin | New Frontiers for Wave Manipulation Using Metamaterials

Saturday, September 9th, 2017

The IEEE Northern Canada Section, Antennas & Propagation Society, and the Microwave Theory & Techniques Society (IEEE NCS AP-S/MTT-S) joint chapter would like to invite you to attend a special distinguished lecture: Dr. Andrea Alu (F-IEEE, F-OSA, F-SPIE, F-APS), The University of Texas at Austin, TX, USA, will be giving a presentation titled “New Frontiers for Wave Manipulation Using Metamaterials

Where:

ETLC Solarium (E2-100), University of Alberta

When:

14-September 12:00 to 01:00PM

Abstract

Metamaterials are artificial materials with properties well beyond what offered by nature, providing unprecedented opportunities to tailor and enhance the interaction between waves with materials. In this talk, I discuss our recent research activity in electromagnetics, nano-optics and acoustics, showing how suitably tailored meta-atoms and arrangements of them open exciting venues to manipulate and control waves in unprecedented ways. I will discuss our recent theoretical and experimental results, including metamaterials for scattering suppression, metasurfaces to control wave propagation and radiation, large nonreciprocity without magnetic bias, giant nonlinearities in properly tailored metamaterials and metasurfaces. Physical insights into these exotic phenomena, new devices based on these concepts, and their impact on technology will be discussed during the talk.

Biography

Andrea Alù is the Temple Foundation Endowed Professor #3 at the University of Texas at Austin. He received his Laurea (2001) and PhD (2007) from the University of Roma Tre, Italy, and, after a postdoc at the University of Pennsylvania, he joined the faculty of the University of Texas at Austin in 2009. His current research interests span over a broad range of areas, including metamaterials and plasmonics, electromagnetics, nano-optics, photonics and acoustics. Dr. Alù is a Fellow of IEEE, OSA, SPIE and APS, and has received several scientific awards, including the ICO Prize in Optics (2016), the NSF Alan T. Waterman award (2015), the OSA Adolph Lomb Medal (2013), and the URSI Issac Koga Gold Medal (2011).

Invited talk: Prof. Motti Haridim

Thursday, August 17th, 2017

The IEEE Northern Canada Section Antennas & Propagation Society and the Microwave Theory & Techniques Society (IEEE NCS APS/MTTS) joint chapter would like to invite you to attend the next installment of our invited talks.  Professor Motti Haridim, H̱olon Institute of Technology, H̱olon, Israel, will be giving a presentation titled “MB antenna- A wire antenna of new type”

Where:

ICE 7-395, University of Alberta

When:

28-August-2017, 03:00 to 04:00PM

Abstract

We present an innovative antenna of new type characterized by a very wide bandwidth, and exhibits advantages over both dipole and monopole. It is based on the MB antenna in which source currents are made  in-phase and then  to a single conductive radiating element. The currents fed to MB antenna’s radiating element are made in-phase by means of a delay line (180-degree phase shifter) introduced in one of the source leads.

The MB antenna is a new kind of antenna recently developed with a single radiating element (like a monopole), and no ground plane (like a dipole). The MB antenna is a multiband antenna radiating at odd-harmonics of its fundamental frequency determined by the delay line used in its feed circuit. The MB antenna can be implemented by the PCB of mobile handsets, acting as the radiating element. Experimental results confirming the validity and the performance of the proposed antenna are presented.

Biography

Motti Haridim received his M.Sc. in electrical engineering from the University of Washington in 1986, and his Ph.D in electrical engineering from Technion- Israel Institute of Technology, Haifa, Israel in 1992.
Since 1994, he has joined the Faculty of Engineering at HIT- Holon Institute of Technology. During 2002-2008 Prof. Haridim was Head of the Dept. of Communication Engineering at HIT. Currently, he serves as Vice President for academic development at HIT.

Prof. Haridim’s research interests are mainly in the physical layer of communication systems, including optical communications, RF communications, antennas, and electromagnetic radiation. He has published over 100 papers on theoretical and applied aspects of antennas, radiation, RF communications and optical communications. He is Head of the technologies and Engineering aspects of radiation, TNUDA- the Israeli national center for non-ionizing radiation. Prof. Haridim was awarded with a number of prizes and research grants for R&D projects in the fields of antennas and radiation.

Distinguished Lecturer: Professor Karu Esselle

Saturday, June 10th, 2017

 

The IEEE Northern Canada Section Antennas and Propagation Society and the Microwave Theory and Techniques Society Joint Chapter (IEEE NCS AP-S/MTT-S) is pleased to announce another Distinguished Lecturer seminar. Professor Karu Esselle, Electronic Engineering, Macquarie University, Sydney, Director of WiMed Research Centre, will be giving a presentation titled “Many names, many advantages – Are resonant cavity antennas the killer planar space-saving approach to get 15-25 dBi gain?“.

Where:

ICE 7-395, University of Alberta

When:

26-June-2017 12:00PM to 01:00PM

Abstract

No other antenna concept has more names. At present these antennas are known as Fabry-Perot cavity resonator antennas, Partial Reflector Surface (PRS) based antennas, Electromagnetic Band Gap (EBG) Resonator antennas (ERAs) and Two-Dimensional Leaky-Wave Antennas, and more names are forthcoming. Yet they all have more or less the same configuration consisting of a resonant cavity, formed between a partially reflecting superstructure and a fully reflecting (ground) plane. The resonant cavity is excited by a small feed antenna. Hence, they are referred to as resonant cavity antennas (RCAs) in this presentation. Since the concept of using a “partially reflecting sheet array” superstructure to significantly enhance the directivity was disclosed by Trentini in 1956, it has been an attractive concept to several antenna researchers for several reasons, including its theoretical elegance, relationships to other well-researched area such as leaky-waves, EBG, frequency selective surfaces and metasurfaces, and practical advantages as a low-cost simple way to achieve high-gain (15-25 dBi) from an efficient planar antenna without an array, which requires a feed network. The RCA concept is one of the main beneficiaries of the surge of research on electromagnetic periodic structures in the last decade, first inspired by EBG and then to some extent by metamaterials. As a result, RCAs gained a tremendous improvement in performance in the last 10 years, in addition to other advantages such as size reduction. As an example, achieving 10% gain bandwidth from such an antenna with a PSS was a major breakthrough in 2006 but now there are prototypes with gain bandwidths greater than 50%. Until recently most RCAs required an area in the range of 25-100 square wavelengths but the latest extremely wideband RCAs are very compact, requiring only 1.5-2 square wavelengths at the lowest operating frequency. Once limited to a select group of researchers, these advantages have attracted many new researchers to RCA research domain, and the list is growing fast, as demonstrated by the diversity of authors in recent RCA publications. RCAs have already replaced other types of antennas, for example as feeds for reflectors. Have they become the killer planar alternative to 3D antennas such as horns and small reflectors? If not, what needs to be done to reach that stage?
This presentation will take the audience through historical achievements of RCA technology, giving emphasis to breakthroughs in the last 10 years. Special attention is given to methods that led to aforementioned bandwidth enhancement and area reduction, dramatic improvement of gain-bandwidth product and unprecedented gain-bandwidth product per unit area demonstrated by RCAs, both theoretically and experimentally. Several choices of superstructures are discussed. These superstructures include all dielectric superstrates with axial permittivity gradients and transverse permittivity gradients and printed superstructures also known as PSSs or metasurfaces. Due to ultra-compactness of modern designs and edge radiation becoming a significant player in the principle of operation, different optimisation methods and strategies have been developed to replace previous unit-cell based methods, which were only suitable for previous larger RCAs. In particular, optimisation of RCAs using automated optimisation methods, including evolutionary algorithms such as Genetic algorithms and Particle Swarm algorithms as well as statistical optimisation algorithms, is described, illustrating the improvements that have been achieved from such optimisations by the speaker’s team and others. Near-filed phase transformation with metasurface-like phase correction structures (PCS) to enhance near-field phase uniformity, and hence far-field directivity, of conventional larger RCAs is presented, highlighting physical reasons for the phase non-uniformity. Both printed (metasurface-type) PCSs and all-dielectric PCSs are included in this discussion. The presentation will conclude with yet unresolved issues, which could be addressed in future research.

Biography

Professor Karu Esselle, IEEE ‘M (1992), SM (1996), F (2016), received BSc degree in electronic and telecommunication engineering with First Class Honours from the University of Moratuwa, Sri Lanka, and MASc and PhD degrees in electrical engineering from the University of Ottawa, Canada. He is a Professor of Electronic Engineering, Macquarie University, Sydney, Director of WiMed Research Centre (one of the two) and the Past Associate Dean – Higher Degree Research (HDR) of the Division of Information and Communication Sciences. He has also served as a member of the Dean’s Advisory Council and the Division Executive from 2003 to 2008 and as the Head of the Department several times. He is also the chair of the Board of management of Australian Antenna Measurement Facility, and elected Chair of both IEEE New South Wales (NSW) Section, and IEEE NSW AP/MTT Chapter, in 2016 and 2017. He directs the Centre for Collaboration in Electromagnetic and Antenna Engineering, and has been selected as one of the three new Distinguished Lecturers of IEEE AP Society for 2017-2020. He is the first Australian AP Distinguished Lecturer (DL) in almost two decades, and the second Australian AP DL ever. When Professor Esselle was elected to the IEEE Antennas and Propagation Society Administrative Committee for a three year term in 2014, he became the only person residing in the Asia-Pacific (IEEE Region 10) to be elected to this highly competitive position in a period of at least six years (2010-2015). He was elevated to IEEE Fellow grade for his contributions to resonance-based antennas. He is also a Fellow of Engineers Australia.

Professor Esselle has authored almost 500 research publications and his papers have been cited over 4,000 times. He is the first Australian antenna researcher ever to reach Google Scholar h-index of 30 and his current h-index is the highest among Australian antenna researchers when Google Scholar errors are corrected. Since 2002, his research team has been involved with research grants, contracts and PhD scholarships worth over 15 million dollars. Professor Esselle has been invited to serve as an international expert/ research grant assessor by several nationwide research funding bodies overseas. He has been invited by Australian and overseas universities to assess applications for promotion to professorial levels. Thirty six international experts who examined the theses of his recent PhD graduates ranked them in the top 5% or 10%. Professor Esselle has provided expert assistance to more than a dozen companies including Intel, Hewlett Packard Laboratory (USA) and Cisco Systems (USA). He is an Associate Editor of IEEE Transactions on Antennas and Propagation and IEEE Access. His research activities are posted in the web at http://web.science.mq.edu.au/~esselle/ .

Distinguished Lecturer: Dr. Walid Ali-Ahmad

Tuesday, May 2nd, 2017

The IEEE Northern Canada Section Antennas and Propagation Society and the Microwave Theory and Techniques Society Joint Chapter (IEEE NCS AP-S/MTT-S) is pleased to announce another Distinguished Lecturer seminar. Dr. Walid Ali-Ahmad, VP of Technology at Qualcomm, Inc. will be giving a presentation titled “Advanced RF Front-End and Transceiver Systems Design Overview for Carrier Aggregation based 4G/5G Radios “.

Where:

ICE 7-395, University of Alberta

When:

15-May-2017 11:00AM to 12:30PM

Abstract

Over the past few years, there has been an explosion in the mobile data usage mostly due to the increasing number of tablets and smartphones in use. To support such demand, wider transmission bandwidths are needed, and hence, the technique of Carrier Aggregation (CA) has been introduced in 4G cellular systems. This enables scalable bandwidth expansion beyond the single LTE carrier by aggregating two or more LTE component carriers of similar or different baseband bandwidth, which can be chosen from the same 3GPP frequency band (intra-band) or different 3GPP frequency bands (inter-band). Furthermore, CA is supported by both FDD and TDD modes, and this offers the optimum flexibility in the way the spectrum is utilized and how the network scheduling is configured. In order to push towards 5G data rates (>1Gbps), leveraging more antennas and transmitting more bits per symbol to increase spectral efficiency requires the use of MIMO and higher-order modulation techniques. This presentation focuses on discussing the RF system architectural challenges for Advanced-LTE based user equipment (UE) radio, and the resultant increased complexity in the radio due to the use of CA, MIMO, and higher order modulation techniques; furthermore, concurrency and coexistence scenarios with other radio access technologies (RAT) are considered in how they further add to the complexity of the RF front-end and to its linearity requirements.

Biography

Walid Ali-Ahmad is currently a VP of Technology at Qualcomm, Inc; he is involved in the architecture and RF systems design of advanced RF front-ends and transceiver systems for 4G and 5G User Equipment (UE). Before July 2014, he was a senior director of Technology at Mediatek, and led the architecture and RF systems design of low-cost 2G/3G/LTE integrated transceivers and SoCs for China market feature phones and smartphones. He was a visiting professor in the ECE department at UC San Diego during Winter term 2016, and was an associate professor in the Electrical Engineering department at the American University of Beirut between Sept 2004 and Sept 2007, with a focus on applied electromagnetics and communication circuits and systems. Between July 1997 and July 2004, he was a principal member of Technical staff at Maxim Integrated products, and led the systems development of the first low-cost low-power WCDMA direct-conversion transceiver IC in SiGe BiCMOS. He holds several patents in the area of RF front-end tuning, and has published many articles and given many talks in the area of RF systems design for cellular and millimeter-wave radio systems. He is a senior IEEE member, and has been part of the IEEE RFIC conference steering committee since 2012; he is currently the RFIC’2017 TPC chair.

Student Seminar Competition Results – 2017

Monday, May 1st, 2017

Thanks to all of our presenters who helped to make these student seminars a success. All of the presenters were ranked by our audiences, all of which were awarded cash prizes. After tallying the audience’s ratings, we are pleased to announce the rankings:

First Place:

Cameron Hough, “Biological dosimetry of THz radiation for potential biomedical application”

 

Second Place:

Elham Baladi, “Devices and Methods Using Apertures Lined with Thin ENNZ Metamaterial Liners”

 

Third Place:

David Sawyer, “Choke Ring Structures for Ground Penetrating Radar”

Our thanks also go out to all of our volunteers for organizing these events and helping to make them a success. Please watch our website for updates on next events!

  • Simple Calendar

    2017 October

    Sun Mon Tue Wed Thu Fri Sat
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31