IN-SITU Cable Condition Monitoring Using Fourier Transform Near-Infrared (FT-NIR) Spectroscopy

Hormoz Azizian
(NIR Technologies Inc.)

and

Steve Benson
(RCM Technologies)
Outline

• Introduction
• FT-NIR
• Experimental details
• Results and discussion
• Conclusions
• References and acknowledgements
Introduction
(FT-NIR in Nuclear Industry Historical Perspective)

- **1995** - Ontario Hydro supported three projects for condition monitoring (chemical analysis, indenter, and spectroscopic methods - FT-NIR)
- **1996** - Several manufacturers were evaluated and FT-NIR from Bruker Optics was purchased and in house development started
- **1998** - Condition monitoring was put on hold due to a pressing need for identification of cables
- **1999** - An identification model was developed and audited for implementation and FT-NIR has since been used to scan thousands of cables in CANDU plants
- **2007** - Condition Monitoring revived

Non-Nuclear Applications Patents awarded to NI R Technologies Inc.
Canadian Patent No. 2,404,891 (Nov. 18, 2003)
Introduction
(FT-NIR - Chemical Method)

Known advantages
- Non-destructive, non-intrusive
- IN-SITU, portable, cost effective and easy to use
- Results generated instantly

Hypothetical advantages
- Accurate, repeatable, using separate, similar tools (i.e.: same Mfr)
- May be more broadly applied than other chemical methods

Disadvantages
- Does not work with black materials, no reflectance
- Alternative method available for black materials but not fully developed as FT-NIR measurements are local only
- Matrix dependent, therefore requires careful attention when developing reference library
Introduction
(Preliminary Investigations)

Objectives

• Determine feasibility of using FT-NIR for condition monitoring
• Determine sensitivity of FT-NIR to changes due to radiation and thermal ageing

Limitations

• Small number of incrementally aged specimens available (PVC and XLPE only)
• Previous chemical testing limited to plasticizer content (PVC)
FT-NIR
(Theory)

- Measurements of energies (near infrared light) absorbed or transmitted by a sample which is proportional to the vibration (stretching and bending) of chemical bonds such as C-H, O-H, N-H
- Provides the chemical ‘finger-print’ of a material at the molecular level which is unique to a specific material formulation at any given point in time
- The chemical ‘finger-print’ changes with chemical changes to molecules i.e., radiation or thermal ageing
- Measurements can be taken in absorption or transmission
- Complex ‘finger-prints’ can be analyzed using Chemometric Analysis
FT-NIR (Apparatus)

Main Components

- Bruker Optics FT-NIR Spectrometer (Matrix-F), weighs about 17 kg
- Custom designed probe from Remspec Corp.
- OPUS software for scanning and analysis
- Laptop

Fibre optic probe can be as short as 1 meter or as long as 10 meters.

Instrument and laptop can be operated during field operation using UPS to move the instrument from one location to another.
Experimental details
(Method/ Analysis)

- FT-NIR scanning range 4,000 - 14,000 cm\(^{-1}\), each measurement typically takes 25 seconds. All samples were scanned at ambient temperature of 20 to 25°C.
- Spectral analysis was carried out and FT-NIR response was compared to Elongation at Break data.
- FT-NIR response for PVC data was also compared to plasticizer data.
- No OIT/ OITP data available for XLPE.
Experimental details

(Specimen Description)

<table>
<thead>
<tr>
<th>Cable #</th>
<th>Mfr</th>
<th>Configuration</th>
<th>Type</th>
<th>Jacket</th>
<th>Insulation</th>
<th>Service Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>X</td>
<td>14C#16AWG (3 colors)</td>
<td>I&C</td>
<td>FRPVC</td>
<td>FRPVC</td>
<td>Negligible radiation, Low Temperature</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>14C#16AWG (3 colors)</td>
<td>I&C</td>
<td>FRPVC</td>
<td>FRXLPE</td>
<td>Negligible radiation, Low Temperature</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
<td>3C#2AWG (2 colors)</td>
<td>Power</td>
<td>FRPVC</td>
<td>FRXLPE</td>
<td>Unknown, but common along entire length</td>
</tr>
</tbody>
</table>

- Cables cut into equal lengths and tied around a mandrel
- Copper conductors extracted for cable# 1 & 2 (1 wire from each colour), insulation tubes are used as elongation specimen, rebundled within jackets, sealed with silicone RTV for ageing
- Cable#7 (1 from each colour) aged as-received, dumbbell-shaped specimens were cut from insulation for elongation testing
Experimental details

(Specimen Ageing)

<table>
<thead>
<tr>
<th>Ageing Phase</th>
<th>Ageing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Natural, 17 yrs, negligible radiation, low temp</td>
</tr>
<tr>
<td>Radiation</td>
<td>14 Mrads (Gamma @ 44krads/hr)</td>
</tr>
<tr>
<td>Thermal, 1(^{st}) increment</td>
<td>255 hrs @ 100 °C</td>
</tr>
<tr>
<td>Thermal, 2(^{nd}) increment</td>
<td>480.5 hrs (cumulative)@ 100 °C</td>
</tr>
<tr>
<td>Thermal, 3(^{rd}) increment</td>
<td>750.5 hrs (cumulative)@ 100 °C</td>
</tr>
<tr>
<td>Post-DBA transient*</td>
<td>284 hrs (additional)@ 90 °C</td>
</tr>
<tr>
<td></td>
<td>(Transient was approx. 6 hrs @ 115 °C with short interval up to 130 °C)</td>
</tr>
</tbody>
</table>

* DBA simulation included saturated steam and elevated pressure

- E_a of 0.86 eV was bounding, not specifically derived
- Specimens stored for 8 years prior to NIR measurements
Results and Discussion
(Absorption Spectra)

![Absorption Spectra Diagram]

- FRPVC
- FRXLPE

Wavenumber [cm\(^{-1}\)]

Absorbance Units
Results and Discussion
(2nd Derivative Spectra)

FRPVC

--- Baseline --- Post Radiation --- Post Thermal
Results and Discussion
(2nd Derivative Spectra)

FRXLPE

--- Baseline --- Post Radiation --- Post Thermal

Wavenumber [cm-1]
Results and Discussion
(Factorized Analysis)

- Average spectrum for each Group, baseline, post-radiation, thermal ageing 1st increment, thermal ageing 2nd increment, post-thermal, and post-LOCA was assessed with respect to different components (known as vectors).

- Vectors are mathematical expressions used in quantifying changes and differences between data sets and may represent more than one component.

- Once a factorized analysis for a particular group of cables has been established, the future scans can be compared to the reference materials incorporated in the factorized analysis model.
Database established for specific material
In range (i.e.) Humidity: 5 to 35%
Temperature: 5 to 50°C

Other variables:
- Probe Length
- Radiation Effects
- Thermal Effects

To confirm the condition of the cable:
Hit Quality (D) \leq Threshold Value (R)
Results and Discussion
(Factorized Analysis)

FRXLPE

Vector 2

Vector 4

Baseline, Post Radiation, Thermal ageing, Post LOCA
Results and Discussion
(Factorized Analysis)

Vector 2

Baseline - Post Radiation - Thermal ageing - Post LOCA - Post Thermal
Results and Discussion
(Factorized Analysis)

Identification Report FRXLPE

Base Line Sample

Identical To: Group 2 Cable 1, Base Line

<table>
<thead>
<tr>
<th>Hit No.</th>
<th>Hit Quality</th>
<th>Reference File</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.021403</td>
<td>BaseLine.100</td>
<td>0.092561</td>
</tr>
<tr>
<td>2</td>
<td>0.444252</td>
<td>Post Radiation.100</td>
<td>0.137538</td>
</tr>
<tr>
<td>3</td>
<td>0.816729</td>
<td>Post Thermal.100</td>
<td>0.060856</td>
</tr>
<tr>
<td>4</td>
<td>0.825758</td>
<td>Thermal 2nd Inc.500</td>
<td>0.070036</td>
</tr>
<tr>
<td>5</td>
<td>0.860556</td>
<td>Thermal 1st Inc.500</td>
<td>0.049324</td>
</tr>
<tr>
<td>6</td>
<td>1.336133</td>
<td>Post LOCA.100</td>
<td>0.100741</td>
</tr>
</tbody>
</table>
Results and Discussion

(Factorized Analysis)

Repeatability

<table>
<thead>
<tr>
<th>Repeat No.</th>
<th>Hit Quality</th>
<th>Reference File</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>BaseLine.100</td>
<td>0.092561</td>
</tr>
<tr>
<td>2</td>
<td>0.072</td>
<td>BaseLine.100</td>
<td>0.092561</td>
</tr>
<tr>
<td>3</td>
<td>0.054</td>
<td>BaseLine.100</td>
<td>0.092561</td>
</tr>
<tr>
<td>4</td>
<td>0.099</td>
<td>BaseLine.100</td>
<td>0.092561</td>
</tr>
<tr>
<td>5</td>
<td>0.055</td>
<td>BaseLine.100</td>
<td>0.092561</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Dev</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and Discussion

(FRPVC properties)

% Elongation (EAB)

\[y = 0.0085x - 1.0864 \]

\[R^2 = 0.9577 \]
Results and Discussion
(FRPVC properties)

Plasticizer Content

\[y = 0.3647x - 8.6452 \]

\[R^2 = 0.9007 \]
Results and Discussion
(FT-NIR vs Elongation)

Cable 1 (FRXLPE)

NIR Response or Avg. % Elongation

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Base line
Post Radiation
Inc.
Thermal 1st Inc.
Thermal 2nd Inc.
Post Thermal
LOCA/MSLB

Avg. % Elongation FT-NIR Response
Results and Discussion
(FT-NIR vs Elongation)

Cable 7 (FRXLPE)

![Graph showing FT-NIR vs Elongation for Cable 7 (FRXLPE)]

- **NIR Response or Avg. % Elongation**
 --axis: Base Line, Radiation, Post, 1st Inc., Thermal, 2nd Inc., Thermal, Post, LOCA
 -axis: Avg. % Elongation, FT-NIR Response

Legend:
- Blue: Avg. % Elongation
- Red: FT-NIR Response

IEEE
SC2 Mtg 08-01

RCM Technologies
The Source of Smart Solutions
Conclusions

- FT-NIR very effective in tracking degradation in PVC and correlated well with Elongation at Break and plasticizer content data.

- FT-NIR responded better than Elongation at Break for the first three stages (base line, post radiation and 1st thermal increment). However, small changes was observed between 1st, 2nd and 3rd thermal increments.
 - It is recognized that EAB is not a good condition indicator for XLPE.
 - Ageing increments not representative of natural ageing and too large for trending.

- Repeatability is achievable (FT-NIR is matrix dependent environmental conditions during scanning must be incorporated into the reference model).
Conclusions
(Where to from here?)

1. Better ageing study designs are necessary to capture the early changes in the artificially aged cables.
2. Establish base line measurements for critical samples (a key to the future assessment).
3. Test ranges of environmental factors that influence spectra.
4. Verify repeatability and identify parameters that need to be incorporated into a model for transferability between two instruments.
5. Investigate sensitivity to stabilizer/anti-oxidant content (OI T/ OITP comparisons) - availability of samples.
6. If warranted, develop new tool for black insulations.
References and Acknowledgements

- IAEA, “Assessment and management of ageing of major nuclear power plant components important to safety: In-containment instrumentation and control cables”, IAEA-TECHDOC-1188, v1, 2000.

The authors gratefully acknowledge Milad Debly of NB Power for generously providing permission to use their aged cable specimens and condition monitoring data. The contribution made by Aaron Law to this presentation are also appreciated.
Questions?!?
FT-NIR vs Elongation

Cable 2 (FRPVC)

NIR Response or % Avg. Elongation x 0.01

Avg % Elongation FT-NIR response
Factorized Analysis

Identification Report FRXLPE

Post Radiation Sample

Identical To: Group 2 Cable 1, Post Radiation

<table>
<thead>
<tr>
<th>Hit No.</th>
<th>Hit Quality</th>
<th>Reference File</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.064653</td>
<td>Post radiation</td>
<td>0.137538</td>
</tr>
<tr>
<td>2</td>
<td>0.378062</td>
<td>Base line</td>
<td>0.092561</td>
</tr>
<tr>
<td>3</td>
<td>0.430845</td>
<td>Post thermal</td>
<td>0.060856</td>
</tr>
<tr>
<td>4</td>
<td>0.439855</td>
<td>2nd Inc. thermal</td>
<td>0.070036</td>
</tr>
<tr>
<td>5</td>
<td>0.474585</td>
<td>1st Inc. thermal</td>
<td>0.049324</td>
</tr>
<tr>
<td>6</td>
<td>0.949752</td>
<td>Post LOCA</td>
<td>0.100741</td>
</tr>
</tbody>
</table>
Factorized Analysis

Identification Report FRXLPE

Post LOCA Sample

Identical To: Group 2 Cable 1, Post LOCA

<table>
<thead>
<tr>
<th>Hit No.</th>
<th>Hit Quality</th>
<th>Reference File</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.084123</td>
<td>Post LOCA</td>
<td>0.100741</td>
</tr>
<tr>
<td>2</td>
<td>0.401655</td>
<td>1st inc. thermal</td>
<td>0.049324</td>
</tr>
<tr>
<td>3</td>
<td>0.436327</td>
<td>2nd inc. thermal</td>
<td>0.070036</td>
</tr>
<tr>
<td>4</td>
<td>0.445327</td>
<td>Post thermal</td>
<td>0.060856</td>
</tr>
<tr>
<td>5</td>
<td>0.817297</td>
<td>Post radiation</td>
<td>0.137538</td>
</tr>
<tr>
<td>6</td>
<td>1.250974</td>
<td>Base line</td>
<td>0.092561</td>
</tr>
</tbody>
</table>
XLPE (EAB vs Ageing Time)