Convex Optimization for Optimal Design and Analysis of Small Antennas

Abstract
Design of small antennas is challenging as the Q-factor, efficiency, and radiation resistance must be controlled simultaneously. In this presentation, convex optimization together with integral expressions of the stored electromagnetic energies are used to analyze many fundamental antenna problems. The solutions to the convex optimization problems determine optimal currents, offer insight for antenna design, and present performance bounds for antennas. We present several optimization formulations such as maximal gain Q-factor quotient, minimal Q for super-directivity, minimal Q for given far field, and efficiency. The effects of antennas embedded in structures such as mobile phones are discussed. Results are shown for various antenna geometries and compared to state of the art designs showing that many antennas perform almost optimally.
Prof. Mats Gustafsson is with the Department of Electrical and Information Technology, LTH, Lund University, Sweden. He received the M.Sc. degree in Engineering Physics 1994, the Ph.D. degree in Electromagnetic Theory 2000, was appointed Docent 2005, and Professor of Electromagnetic Theory 2011, all from Lund University, Sweden. He co-founded the company Phase holographic imaging AB in 2004. His research interests are in scattering and antenna theory and inverse scattering and imaging with applications in microwave tomography and digital holography. He has written over 80 peer reviewed journal papers and over 100 conference papers. Prof. Gustafsson received the Best Antenna Poster Prize at EuCAP 2007, the IEEE Schelkunoff Transactions Prize Paper Award 2010, and the Best Antenna Theory Paper Award at EuCAP 2013. He is currently a Distinguished Lecturer of the IEEE Antennas and Propagation Society.