Packaging Challenges

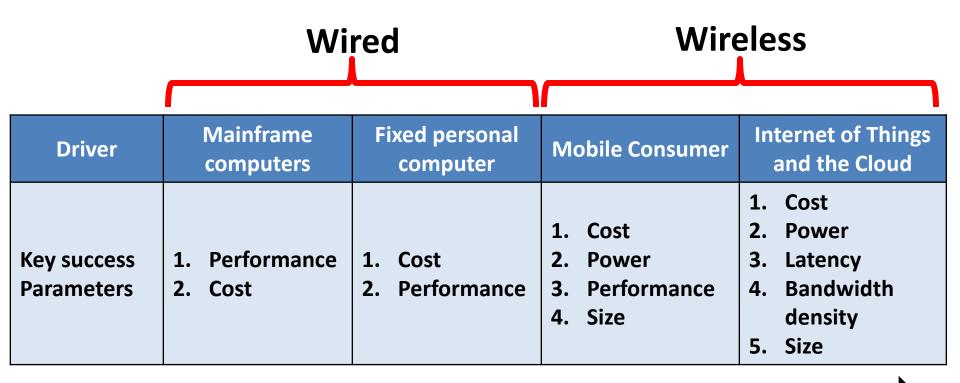
Driven By The IoT And Migration To The Cloud

Presented by: W. R. Bottoms

Internet of Things: Technologies Enabling The Revolution

Emerging Technology Drivers

There are 2 market driven trends forcing more fundamental change on the industry as they move into position as the new technology Drivers.

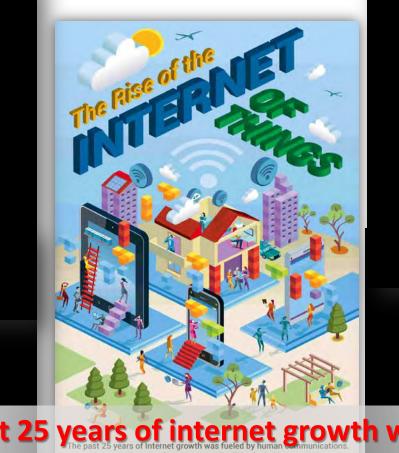

Rise of the Internet of Things

✓ Data, logic and applications moving to the Cloud

Over the next 15 years almost everything will change including the global network architecture and all the components incorporated in it or attached to it.

Internet of Things: Technologies Enabling The Revolution

The Driving Forces are Changing

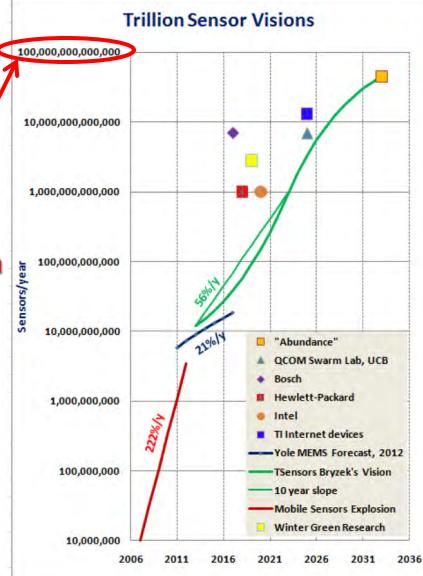

Time

Internet of Things: Technologies Enabling The Revolution

Rise of the Internet of Things

Internet of Things: Technologies Enabling The Revolution

The Internet of Everything Driven by Human Communication and Machines


The past 25 years of internet growth was fueled by human communications. The next 25 years will be fueled by machines- much of it by IoT

Internet of Things: Technologies Enabling The Revolution

IoT With Trillions Internet Connected Sensors

Internet of Things: Technologies Enabling The Revolution

Rules for V-to-V Communication to be released in 2016

Vehicles will "talk" to each other sharing:

- ✓ Vehicle size
- ✓ Position
- ✓ Speed
- ✓ Heading
- ✓ Lateral/longitudinal acceleration
- ✓ Yaw rate
- ✓ Throttle position
- ✓ Brake status
- ✓ Steering angle
- \checkmark Wiper status turn signal status
- Enabling safety/mobility applications.

Internet of Things: Technologies Enabling The Revolution

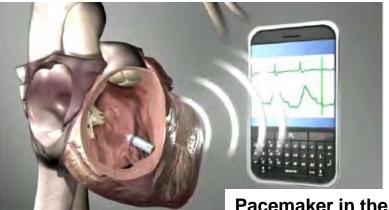
Source: NHTSA UC Irvine December 5, 2014

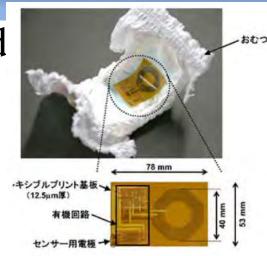
Rules for V-to-V Communication to be released in 2016

Vehicles will "talk" to each other sharing:

- ✓ Vehicle size
- ✓ Position
- ✓ Speed

- ✓ Throttle position
- ✓ Brake status
- ✓ Steering angle
- \checkmark Wiper status turn signal status
- ✓ Enabling safety/mobility applications.


Internet of Things: Technologies Enabling The Revolution


Source: NHTSA UC Irvine December 5, 2014

New Connected Products Are Coming

Even diapers will be connected - 40M/day in the US alone

Pacemaker in the heart With smart phone

- Real-time diaper wetness sensor & notification
- Impedance measurement
- RF connection
- University of Tokyo work Source: www.medgadget.com

Many connected products will connect to and through Smart phones and tablets

Internet of Things: Technologies Enabling The Revolution

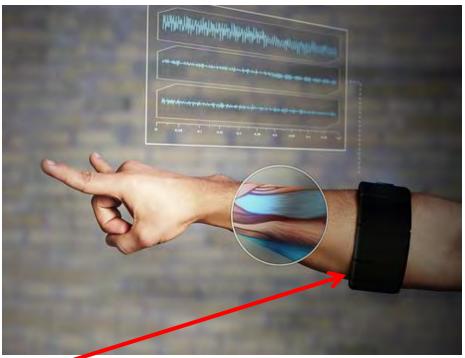
New Connected Products Are Coming

Even diapers will be connected - 40M/day in the US alone

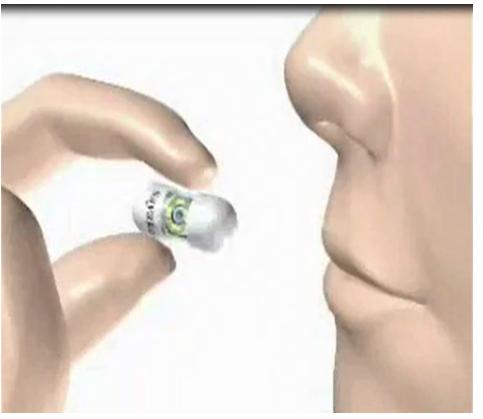
Internet of Things: Technologies Enabling The Revolution

Emerging IoT Sensor Applications will Require new Package Architectures

Thalmic working with *Google Glass*, *Epson Moverio*, and *Recon Jet* already has a half dozen applications ready.

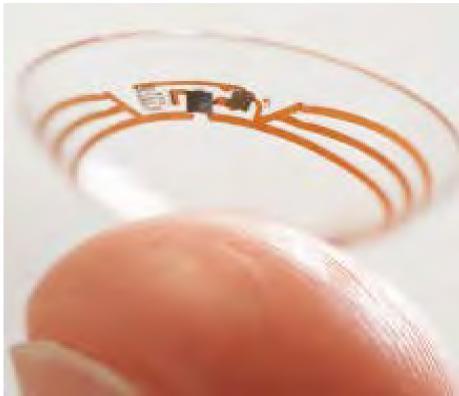

One is for medical applications when a doctor need hands-free, voice free access to information.

Packaging this wearable with sensors, logic, and communications while keeping it comfortable and reliable adds new packaging challenges


Internet of Things: Technologies Enabling The Revolution

Arm band can discern dozens of hand gestures making head-mounted displays hand and voice free.

Source: Thalmic Labs



IoT Medical Devices

Next Generation Endoscope

Contact Lens with intelligence and control

Internet of Things: Technologies Enabling The Revolution

IoT: Brain Wave Control is here

Emotiv Insight Brainware

- This product from Philips gives brain wave control of machines to people
- ✓ 3 Probes mounted in a headband
- Initial application is to give people with Lou Gehrig's Disease control over household appliances and systems.
- \checkmark Initial human trials to date have been successful.

Is Man to machine telepathy coming?

The prospect opens the imagination for science fiction to become reality

Internet of Things: Technologies Enabling The Revolution

Migration to the Cloud Data, logic and Applications

What are the Packaging Challenges?

Internet of Things: Technologies Enabling The Revolution

Data Traffic Drives Network Requirements Network Components Drive Packaging

Changes driving data traffic:

- ✓ Global IP traffic will pass <u>1.4 Zettabytes (10²¹)</u> by 2017
- ✓ Wireless traffic will surpass wired traffic by 2016
- ✓ The number of mobile-connected devices will exceed the number of people on earth by the end of this year
- ✓ IoT growth will drive demand for bandwidth
- ✓ Data, Logic and Applications are migrating to the Cloud

Today packaging is a limiting factor in cost, performance and size.

The Network Architecture Must Change **Globally and Locally**

Higher connectivity Flat Architecture

Transition to lower power

& latency

✓ Higher bandwidth per port

-

- ✓ Lower end-to-end latency
- ✓ Lower power
- ✓ Lower cost

Core router Cluster switches

Aggregation layers

Servers

Traditional Hierarchical Tree Topology

E

Internet of Things: Technologies Enabling The Revolution

Optical Packet

Switch

Flat Network Topology

The Network Architecture Must Change Globally and Locally

- ✓ Higher connectivity Flat Architecture
- Higher bandwidth per port
- ✓ Lower end-to-end latency
- ✓ Lower power
- ✓ Lower cost

Core router

Cluster switches

Transition to Iower Power & latency

Optical Packet Switch

Photonics to the Board, package and even chip level may be required.

Internet of Things: Technologies Enabling The Revolution

The Network Architecture Must Change Globally and Locally

✓ Higher connectivity Flat Architecture

Higher bandwidth per port

All this is needed at <u>no increase in total cost</u> Lower cr<u>and total Network power</u> Packet

Core router

Cluster

Power and cost/function need >10⁴ improvement over the next 15 years.

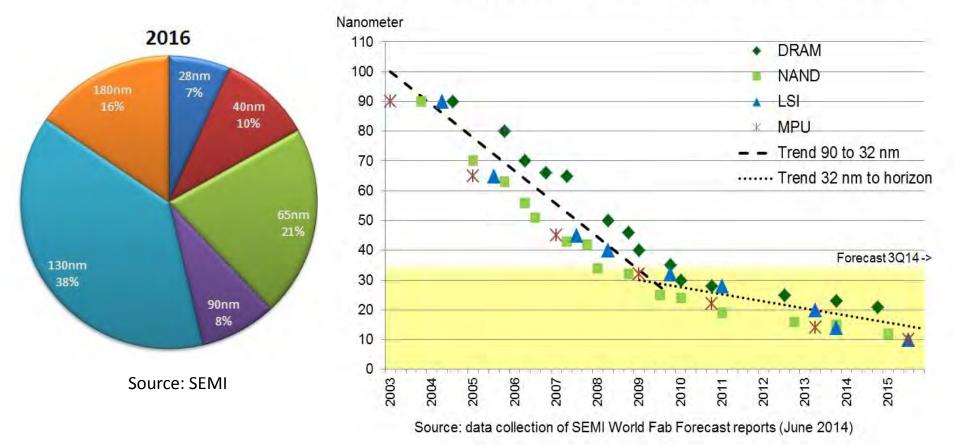
Photonics to the Board, package and even chip level may be required.

Internet of Things: Technologies Enabling The Revolution

Only a Revolution in Packaging can satisfy these diverse Needs

At the leading edge everything will change including the global network and everything included in it and connected to it. This requires:

- New design and simulation tools
- New materials
- $\checkmark \qquad \text{New device designs and architectures}$
- New package architectures
- New network architectures
- New manufacturing processes

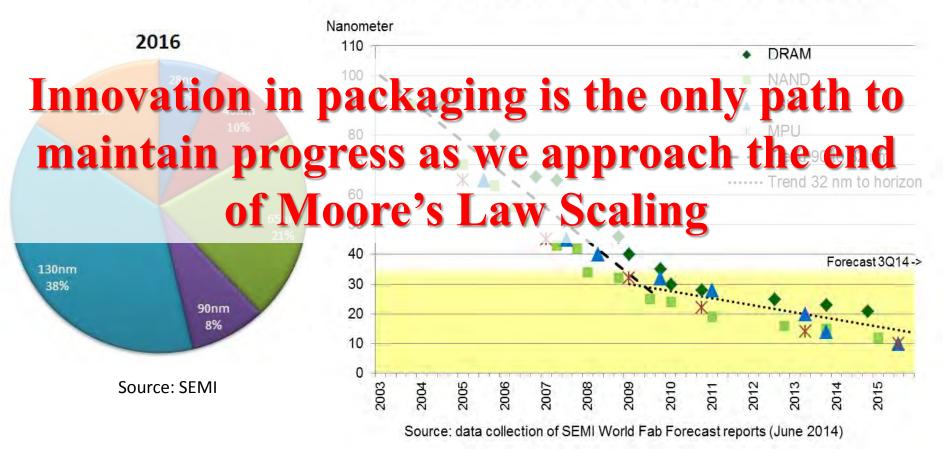

The Revolution in Packaging

Internet of Things: Technologies Enabling The Revolution

Fab Node Progress is Slowing

In 2016 38% of Production will be at 130ηm first introduced in 2001

Volume Production Technology Node Transitions

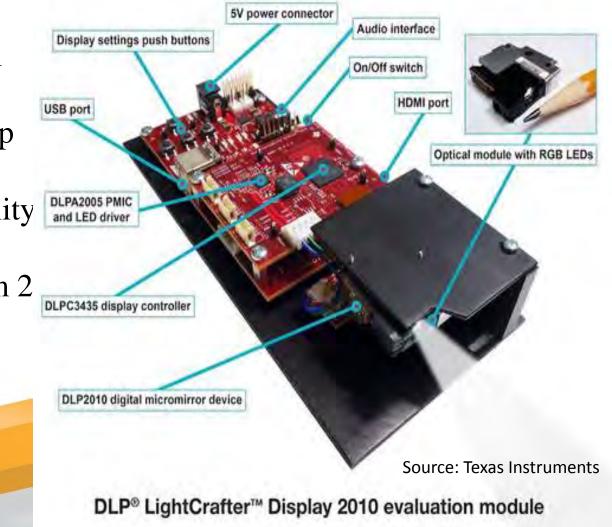


Internet of Things: Technologies Enabling The Revolution

Fab Node Progress is Slowing

In 2016 38% of Production will be at 130ηm first introduced in 2001

Volume Production Technology Node Transitions



Internet of Things: Technologies Enabling The Revolution

Heterogeneous Integration in Packaging MEMS and Electronics for IoT

TI's latest digital light projector (DLP) is small enough to mount on eyeglasses for a heads up display, or with one for each eye, for virtual reality It comes built into Samsung's Galaxy Beam 2

Internet of Things: Technologies Enabling The Revolution

Heterogeneous Integration in Packaging MEMS and Electronics for IoT

TI's latest digital light 5V power connector **Display settings push buttons** projector (DLP) is small enough to mount on **USB** port eyeglasses for a heads up display, or with one for each ey Their Revolution in Package It comes built into Samsung's Galaxy is am just beginning

DLP2010 digital micromirror device

Source: Texas Instruments

Optical module with RGB LEDs

DLP[®] LightCrafter[™] Display 2010 evaluation module

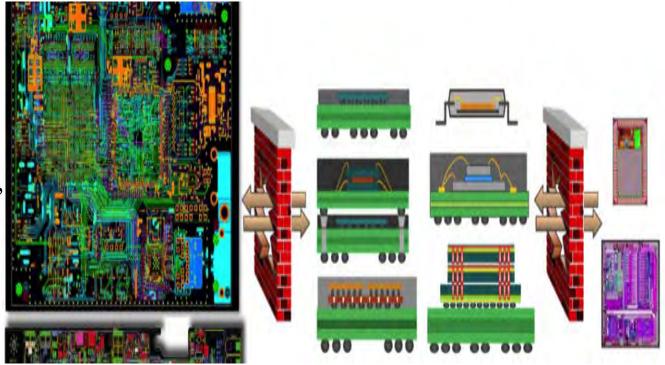
Audio interface

On/Off switch

HDMI port

Internet of Things: Technologies Enabling The Revolution

Major ChallengesPowerLatencyThermal managementBandwidth densityCostWe must move things closer together


Internet of Things: Technologies Enabling The Revolution

Co-design and Simulation Tools for Packaging are Critical Needs

Tools that integrate across the boundaries of device, package, printed circuit board and product will speed the process of migration to higher density (SoC, SiP, 2.5D, 3D, etc.).

This enables:

- ✓ Increased performance and bandwidth
- Decreasing latency, power, size, cost
- Reduced time to market

Internet of Things: Technologies Enabling The Revolution

Reducing power requirements and ensuring reliability and power integrity at the point of use are major challenges.

What are the potential solutions?

Internet of Things: Technologies Enabling The Revolution

How Can We Reduce Power?

- ✓ Continue Moore's Law Scaling
- ✓ Reduce leakage currents
 - Transistors are less than 10% of IC power today and going down
- ✓ Reduce on-chip Interconnect power by:
 - Improved conductor conductivity
 - Decrease capacitance
- ✓ Reduce interconnect length
- ✓ Reduce operating frequency
- ✓ Reduce operating voltage
 - Voltage regulator per core

- (new material) (new material) (3D integration) (increased parallelism)
 - (increased parallelism)

(new transistor designs)

- ✓ Reduce high speed electrical signal length
 - Move photons closer to the transistors (On-package photonics)

Thermal management is critical due to higher circuit density and lower operating temperature requirement. What are the potential solutions?

Internet of Things: Technologies Enabling The Revolution

Potential Thermal Management Solutions

- ✓ Don't make heat in the first place
- Improved thermal conductivity through new materials
- Incorporation of microfluidics, heat pipes
 Segregation of high temperature components

Internet of Things: Technologies Enabling The Revolution

Don't Make Heat in the 1st Place

IBM's Neurosynaptic Processor

- ✓ 5.4 billion transistors (biggest chip IBM ever made)
- ✓ 70 milliwatts power (20 milliwatts per cm^{2})
 - 5,000 X cooler than todays MPU's
- ✓ Fully scalable
- ✓ End goal is a "brain in a box"
- ✓ 100 billion synapses at 1 KW
- ✓ Applications include
 - Smartphones
 - Other mobile devices
 - Cloud services with this technology.

IBM's neurosynaptic processor, 1 M Neurons and 256 M Synapses

"The chip delivers 46 billion SOPS per Watt -- literally a supercomputer the size of a postage stamp, with the weight of a feather and using a power source the size of a hearing aide battery,"

Dharmendra Modha, IBM fellow

Internet of Things: Technologies Enabling The Revolution

Source: IBM UC Irvine December 5, 2014

Don't Make Heat in the 1st Place

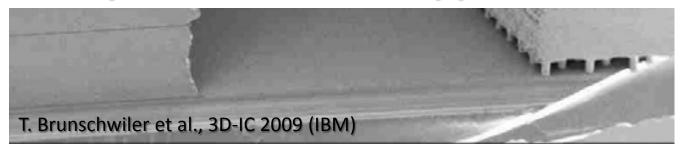
IBM's Neurosynaptic Processor

- ✓ 5.4 billion transistors (biggest chip IBM ever made)
- \checkmark 70 milliwatts power (20 milliwatts per cm²)
 - 5,000 X cooler than todays MPU's
- ✓ Fully scalable
- ✓ End goal is a "brain in a box"
- ✓ 100 billion synapses at 1 KW
- Applications include

Increasing Power Efficiency results in more advantages than just thermal management^{ses}

"The chip delivers 46 billion SOPS per Watt -- literally a supercomputer the size of a postage stamp, with the weight of a feather and using a power source the size of a hearing aide battery,"

Dharmendra Modha, IBM fellow


Source: IBM UC Irvine December 5, 2014

Internet of Things: Technologies Enabling The Revolution

Microfluidic Cooling Is One Solution

It works but It is likely to remain too expensive for most applications

Internet of Things: Technologies Enabling The Revolution

Physical density of Bandwidth is a roadblock.

Data processing in the cloud will be waiting for data much of the time with current bandwidth and latency limitations.

What are the solutions?

Internet of Things: Technologies Enabling The Revolution

Potential Bandwidth/Latency Solutions

- Put as much function into Photonics as possible
- ✓ Move photonics closer to the transistors
- Improve O to E conversion and modulation density through sub-wavelength confinement of photon energy
- ✓ Flatten the network architecture to minimize switches

✓ Increase bandwidth per fiber

Several "Potential Solutions" impact more than one Category.

I will address each major multi category item under four topics:
✓ New Materials
✓ Photonics Close to Transistors
✓ Cost reduce Manufacturing
✓ Package Architecture

Internet of Things: Technologies Enabling The Revolution

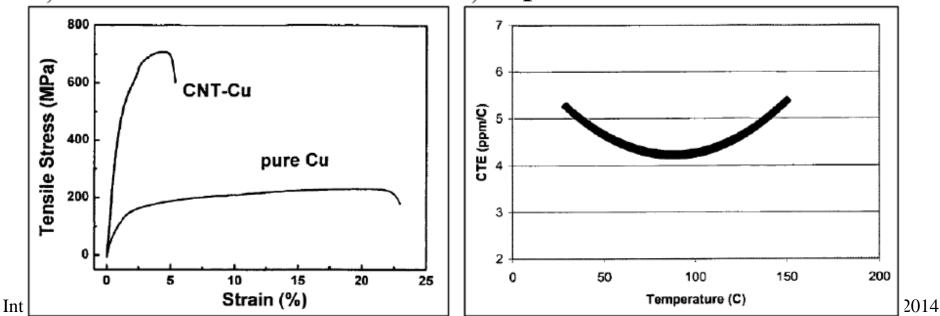
Conductors Are Changing

Composite Copper is in evaluation. Current status:

Measurement	Conventional Copper	TeraCopper® 1.26 x 10 ⁻⁶ 7.94 x 10 ⁷ 32% 5.57 x 10 ⁴ 44%	
Resistivity (Ohm·cm)	1.66 x 10 ⁻⁶		
Conductivity (S/m)	6.02 x 10 ⁷		
Increase in Conductivity	N/A		
Avg. Current Capacity(Amps/cm ²)	3.88 x 10 ⁴		
Increase in Current Capacity	N/A		

The first electrical performance improvement in copper since 1913 makes composite copper the most electrically conducting material known at room temperature.

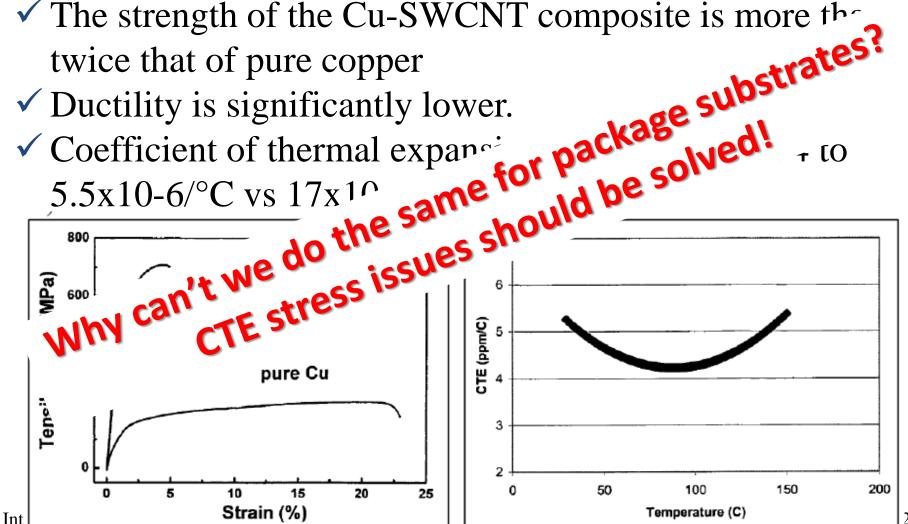
Targets for improvement compared to conventional copper are:


- ✓ 100 % increase in electrical conductivity
- ✓ 100% increase in thermal conductivity
- ✓ 300% increase in tensile strength

Internet of Things: Technologies Enabling The Revol**&tionce:** NanoRidge

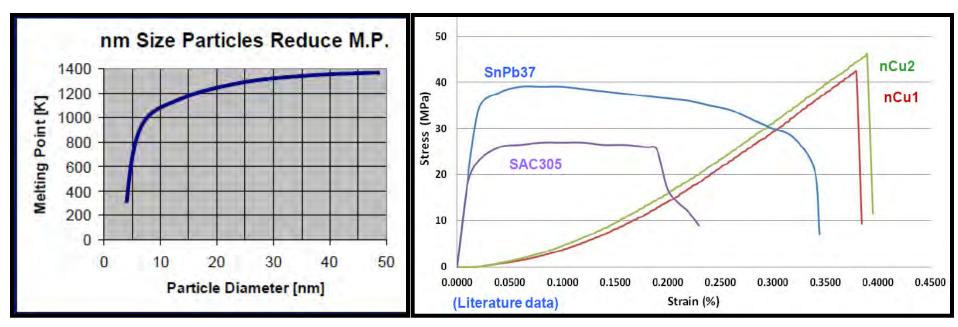
Composite Cu Properties

Measured Properties show:


- The strength of the Cu-SWCNT composite is more than twice that of pure copper
- ✓ Ductility is significantly lower.
- ✓ Coefficient of thermal expansion ranges between 4 to 5.5x10-6/°C vs 17x10-6/°C for pure Cu.

Composite Cu Properties

Measured Properties show:

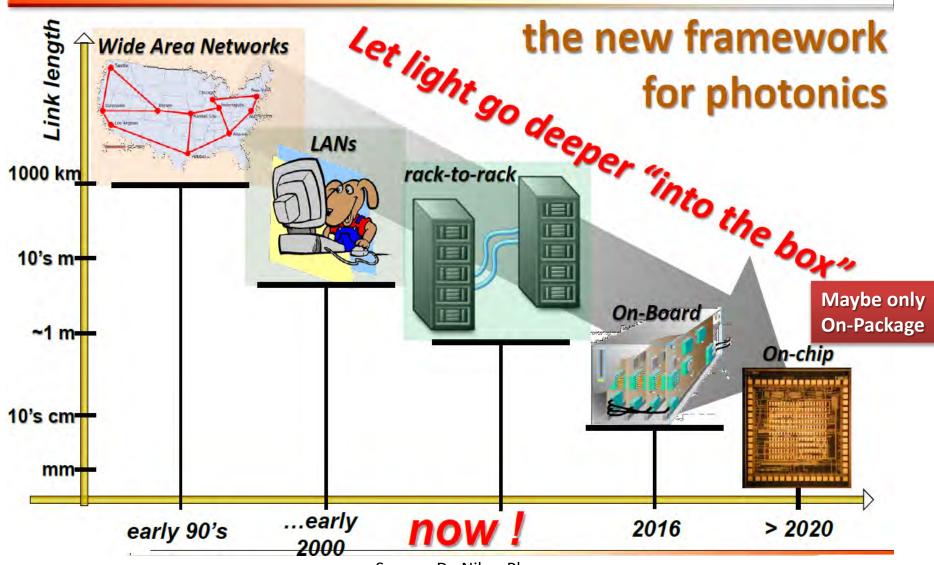

- ✓ The strength of the Cu-SWCNT composite is more the
- ✓ Ductility is significantly lower.
- ✓ Coefficient of thermal expansion

200

Low temp Cu Nano-solder

- Package assembly at low temp (100C)
- ✓ Reflow solder to PCB <200C
- ✓ Consistent with Direct Interconnect Bonding

Internet of Things: Technologies Enabling The Revolution


UC Irvine December 5, 2014

Crystalli

Move Photons as Close as Possible to the Transistors

Internet of Things: Technologies Enabling The Revolution

Photonics Penetration In The Network

Source: Dr. Nikos Pleros

Internet of Things: Technologies Enabling The Revalution University

What Are The Challenges?

✓ Silicon photonics connections are too expensive for on-chip and perhaps for on-package applications

Directed research can change this

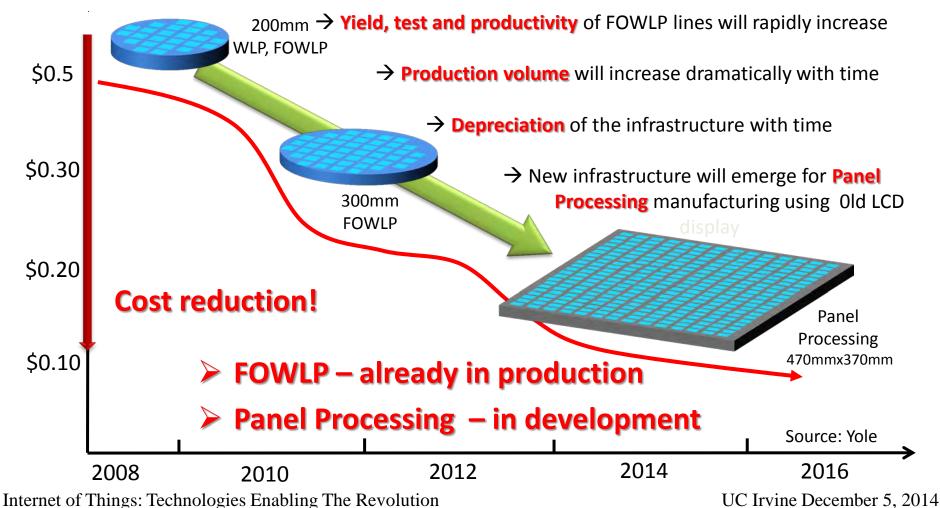
✓ Roadblocks:

- Co-design tools are not available
- Size of optical components
- Lowest power requires heterogeneous integration with new mechanical and thermal challenges
- Thermal stability of key components requires temp control
- Hot spots in SiP assemblies and on-chip.
- ✓ Solutions will require research and development
 - New materials will be a key
 - TSVs filled with polymer for waveguide?
 - It can also carry electrical signals in TSV lining.

.....and things we have not yet thought of!

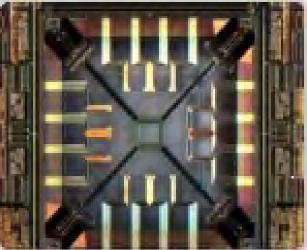
Co-Integration of Technologies

Use each technology where it is the best:


- ✓ Electronics
 - Active logic and memory (Processing and routing)
 - Smallest size
- ✓ Photonics
 - High bandwidth
 - Energy efficient
 - Long and intermediate distance
- ✓ Plasmonics (R. Zia et al., "Plasmonics: the next chip-scale technology", Materials Today 9(7-8), 2006)
 - Much smaller than photonic components
 - Potentially seamless interface between Optics and Electronics
 - Low power active functions

Cost Reduction in Manufacturing

Internet of Things: Technologies Enabling The Revolution


WLP, FOWLP and Panel Processing Increase Parallelism and Reduce Cost

FOWLP Cost/die

WLP for MEMS Devices

MEMSIC, a MEMS sensor company manufactures a 3 axis accelerometer utilizing WLP technology

Wafer Level Packaging of 3D accelerometer enables:

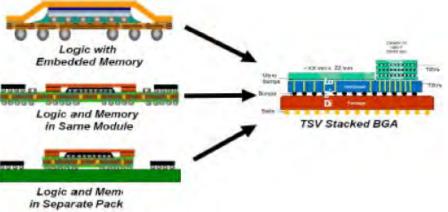
- ✓ 60 percent reduction in cost
- \checkmark 50 percent reduction in size

A packaging solution enabling new generations of consumer devices (phones, tablets, toys and wearable devices)

Internet of Things: Technologies Enabling The Revolution

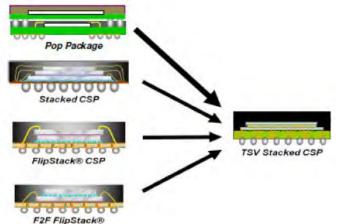
Reduce Processing Steps

Remove package underfill


- ✓ New materials and lower processing Ziptronix DIB temperature to reduce stress Cu nano-solder
 - Reduce CTE differential
 Ultra-conducting CU
- ✓ Lower modulus materials with improved fracture toughness
 New ULK dielectrics
- ✓ Improved interfacial adhesion Alchimer metal
- ✓ Reduce stress concentration by design Simulation

Packaging Architectures in use Today and In the IoT/Cloud Driven Future

Internet of Things: Technologies Enabling The Revolution


Advantages Of The 2.5D/3D Integration

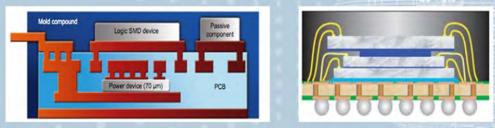
2.5D Integration Improvement

- 100X improvement in die to die Bandwidth per watt
- Power reduced by 50%
- 5X latency reduction

3D-TSV Integration Further Improvement

- 8X improvement in Bandwidth
- Power reduced by 50%
- Reduced thickness

Source: Amkor


UC Irvine December 5, 2014

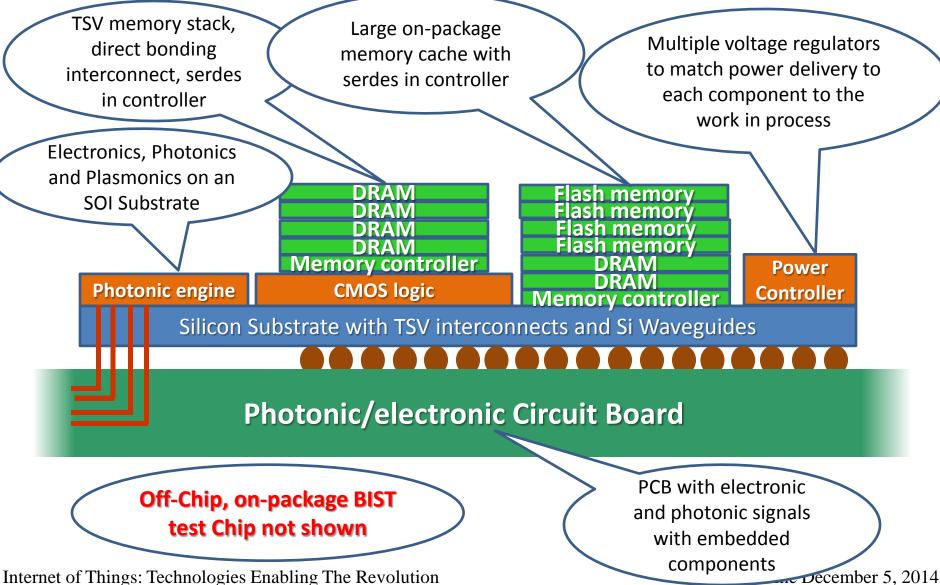
Internet of Things: Technologies Enabling The Revolution

3D Packaging is also for Power Devices Particularly for SiP Components

3D Power Packaging Offers several advantages

- ✓ Reduced footprint
- ✓ Reduced volume
- ✓ Increased power density w/cm²
- Incorporates embedded components

Embedding Actives or Passives in Substrate


3D Stacked Die Packaging (Amkor)

Applications driving the need for 3D power packaging

DCDC 3D Packaging Survey - Identified Important Markets								
	0 - 10W	11 - 50W	50 - 250W	251 - 500W	501 - 999W	1KW+		
Industrial	***	***	**	\$	\$	\$		
Military/Aero	***	***	**	\$		***		
Smartphone/tablet	***	\$	\$					
Server	***	***	***	\$	\$			
PC	**	***	***	*				
Comms	***	****	****	\$	Si	SiP Component		
Consumer	***	***	**					
Transport/Auto	**	**	**	**		**		

Internet of Things: Technologies Enabling The Revolution

A Potential Solution: 2.5D Photonic Co-integrated SiP

Summary

Requirements for IoT/Cloud driven Global Network

- ✓ Cost and power reduced by >10⁴
- \checkmark Flatten the architecture increase ports by >10⁶
- ✓ Reduce latency
- Support software defined networks

Technology identified can deliver 10³ improvement at most.

A majority of improvement we see comes from packaging. Innovation is needed but is it practical to find another order of magnitude?

In the first 40 years of Moore's Law scaling every parameter improved by more than one million times.

Maybe 2 orders of magnitude in 15 years is too conservative

Internet of Things: Technologies Enabling The Revolution

Thank You for Your Attention

Internet of Things: Technologies Enabling The Revolution