We are pleased to announce that IEEE Power & Energy member Arun G. Phadke has been selected to receive The 2016 IEEE Power Engineering Medal.

His citation is presented below.

Feb-FeatureArun G. Phadke
For contributions to synchrophasor technology for monitoring, control, and protection of electric power systems

The pioneering work of Arun Phadke on computer-based protection equipment for providing precise, real-time data on power transmission system conditions has provided the backbone for today’s wide-area measurement and control systems used to ensure power grid reliability and prevent disruptions from leading to large-scale blackouts. Phadke developed synchrophasors for measuring the flow of electricity through the power grid. Synchrophasors are time-synchronized numbers that represent both the magnitude and phase angle of the sine waves found in electricity and are time-synchronized for accuracy. Phadke also developed the phasor measurement unit (PMU) for measuring synchrophasors. PMUs have proven to be the main tool for the monitoring, protection, and control of the grid and are considered a quantum leap over analog technology, quickly providing the information needed to maintain grid stability over a wide region.

During the 1990s, Phadke helped develop the concept of adaptive relaying. Using the computing and communications capability of computer relays, this concept allows for automatic adjustment of protective relay characteristics to match prevailing power system conditions to avoid unnecessary trips of equipment as a catastrophic power system event evolves. Phadke’s efforts on advancing computer-based protective relaying began in the early 1970s when his implementation of protective algorithms in an IBM minicomputer and its subsequent installation in a 138-kV substation near Roanoke, Virginia, represented the world’s first communicating relay and fault recorder. Also, his digital symmetrical component distance relay was a significant contribution to the distance protection of transmission lines. His early work on Fourier transforms for voltage and current calculation serves as the foundation for most of the digital relays installed throughout the world today.