Collector System Design
Considerations for Wind Farms

Sean Carr
Ernst Camm
S&C Electric Co.
Overview

• Challenges in wind farm collector systems
• Design considerations for collector systems
• Summary

The presentation will discuss the most prevalent collector system design for land based wind farms with underground collector systems.
Challenges in Wind Farm Collector Systems

- Location and terrain of wind farm site
- Installation methodology and constructability
- Ice throw from wind turbines
- Length of collector system cable circuits
- Cable testing and fault locating of collector circuits
Design Considerations for Collector Systems

- Most common voltage levels for collector systems
 - 15 kV
 - 25 kV
 - 35 kV (most typical) / 46 kV (Canada)
- 35 kV is the most common system voltage utilized for wind farm collector systems because of the long circuit lengths and loading requirements
- UK voltages typically 11 kV and 33 kV
Cable Design

- Cable insulation levels
- Cable type and sizes
- Cable ampacities
 - Load factor
 - Number of circuits
 - Cable installation geometry and method
 - Thermal resistivity and temperature
 - Cable shield voltages and bonding method
Circuit Configuration and Soil Thermal Resistivity Impact on Ampacity

Ampacity vs RHO for Single and Parallel Circuits

1 Circuit, 3 Cables, Trefoil, 90 °C, 1/3 Neutral, 35 kV, 40” Direct Buried, Spaced 12” Between Circuits
Cable Sheath Bonding and Grounding

- Three basic methods of sheath bonding
 - single-point bonding
 - solid bonding
 - cross bonding
- NESC Sec. 9 Rule 92C
 - “4 grounds per mile”
 - includes grounds at transformers, splices, etc.
- Parallel grounding conductor
Surge Protection Considerations for Collector Systems

- Surge protection typically installed at last pad-mounted transformer on each feeder string of collector circuit
- Considerations in application of surge arresters
 - location of arresters, type of mounting
 - system grounding
 - circuit length
 - transient analysis (EMTP) may be required
System Protection Considerations for Collector Systems

- Considerations for protection of collector systems
 - long circuit lengths may not allow for easy detection of ground faults
 - system grounding (grounded vs. ungrounded)
 - selective coordination of collector system circuits
 - selective coordination with upstream pad-mounted transformers at WTG
 - temporary overvoltages caused by ground faults
 - loss of phase during fault with single phase tripping and reclosing on transmission system or downed conductor
 - WTG may feed faults for several cycles
Collection Switchgear

- Underground distribution switchgear
- Metal-enclosed switchgear
- Circuit breakers
Reactive Power Compensation

- Reactive power compensation systems for meeting interconnect requirements (FERC 661-A) for power factor and LVRT:
 - power-electronically switched capacitors
 - distributed static compensators
 - mechanically-switched capacitors
Other Considerations

- Ferroresonance
 - can occur in collector system circuits with ungrounded wye or delta primary transformer connections because of:
 - single pole switching or reclosing
 - single phasing during faulted conditions
 - preventing ferroresonance on collector systems
 - provide grounding transformers
 - size of grounding transformers > 5% of feeder load
Other Considerations

• Fault locating
 – long circuit lengths can make locating and isolation of faults difficult
 • provide sectionalizing points for circuits that do not exceed capabilities of fault locating equipment
 • include sectionalizing points for isolation and restoration
• Use directional fault indicators at WTG transformers to provide for fault detection and isolation
Other Considerations

• SCADA systems
 – typically installed as a part of the collector system
 – design considerations
 • circuit length
 • number of turbines on a circuit
 • communications protocol
 • fiber type
 – single-mode fiber
 – multi-mode fiber
Analytical Studies for Collector Systems

- Analytical studies typically performed during the design phase:
 - cable ampacity
 - system losses
 - voltage drop/regulation
 - short-circuit and coordination
 - transients and insulation coordination (EMTP)
 - harmonics
Summary

• Key considerations in collector system design
 – system voltage
 – insulation levels
 – cable ampacity parameters
 • load factor, installation method, bonding method, thermal considerations
 – other factors
 • surge protection, system protection, ferroresonance, SCADA
 – collection switchgear and compensation requirements
IEEE PES Support for Wind Farm Collector System Design

- Recommended practices/standards
- Equipment application guidelines
- Development and validation of equipment models
- Training