Accelerating the Convergence of Stochastic Unit Commitment Problems by Using Tight and Compact MIP Formulations

Germán Morales-Españo†, and Andrés Ramos*

†Delft University of Technology, Delft, The Netherlands
*Universidad Pontificia Comillas, Madrid, Spain

PES General Meeting
Denver-USA, July 2015
UC and MIP

- Unit Commitment (UC): essential tool for day(week)-ahead planning in the electricity sector
 - Decide on units’ physical operation (e.g., on-off) at minimum cost
 - UC is an integer computationally demanding problem
Introduction

UC and MIP

- Unit Commitment (UC): essential tool for day(week)-ahead planning in the electricity sector
 - Decide on units’ physical operation (e.g., on-off) at minimum cost
 - UC is an integer computationally demanding problem

- Significant breakthroughs in Mixed-Integer Programming (MIP)
 - Solving MIP 100 million times faster than 20 years ago1

- The time to solve UC is still a critical limitation

UC and MIP

- Unit Commitment (UC): essential tool for day(week)-ahead planning in the electricity sector
 - Decide on units’ physical operation (e.g., on-off) at minimum cost
 - UC is an integer computationally demanding problem
- Significant breakthroughs in Mixed-Integer Programming (MIP)
 - Solving MIP 100 million times faster than 20 years ago\(^1\)
- The time to solve UC is still a critical limitation
- How to reduce solving times?
 - Computer power (e.g., clusters)
 - Solving algorithms (e.g., solvers, decomposition techniques)

UC and MIP

- Unit Commitment (UC): essential tool for day(week)-ahead planning in the electricity sector
 - Decide on units’ physical operation (e.g., on-off) at minimum cost
 - UC is an integer computationally demanding problem
- Significant breakthroughs in Mixed-Integer Programming (MIP)
 - Solving MIP 100 million times faster than 20 years ago\(^1\)
- The time to solve UC is still a critical limitation
- How to reduce solving times?
 - Computer power (e.g., clusters)
 - Solving algorithms (e.g., solvers, decomposition techniques)
 - Improving the MIP-Based UC formulation ⇒ ↓ solving times

Outline

1. Introduction

2. Good and Ideal MIP formulations

3. Tight & Compact (TC) UC Formulations

4. Case Studies
 - Deterministic Selft-UC
 - Stochastic UCs: Different Solvers
 - Stochastic UCs: IEEE-118 Bus System

5. Conclusions
An MIP Has Infinite LP Formulations
An MIP Has Infinite LP Formulations

LP1 and LP2 represent the same MIP problem.

Feasible solutions = •
An MIP Has Infinite LP Formulations

$\text{LP1}, \text{LP2}$ and CH represent the same MIP problem

which one to choose?
Solving MIP Through The Powerful LP

Shaping the linear feasible region to arrive from vertex Z_{LP} to Z_{MIP}

To prove optimality Z_{MIP} must become a vertex by:

- Branch and bound (divide and conquer)
Solving MIP Through The Powerful LP

Shaping the linear feasible region to arrive from vertex Z_{LP} to Z_{MIP}

To prove optimality Z_{MIP} must become a vertex by:

- Branch and bound (divide and conquer)
Solving MIP Through The Powerful LP

Shaping the linear feasible region to arrive from vertex Z_{LP} to Z_{MIP}

To prove optimality Z_{MIP} must become a vertex by:
- Branch and bound (divide and conquer)
Solving MIP Through The Powerful LP

Shaping the linear feasible region to arrive from vertex Z_{LP} to Z_{MIP}

To prove optimality Z_{MIP} must become a vertex by:

- Branch and bound (divide and conquer)
Solving MIP Through The Powerful LP

Shaping the linear feasible region to arrive from vertex Z_{LP} to Z_{MIP}

To prove optimality Z_{MIP} must become a vertex by:

- Branch and bound (divide and conquer)
- and/or by adding cuts
Convex Hull: The Tightest Formulation

Convex Hull (CH)
Smallest convex feasible region containing all feasible integer points

Convex Hull: The Tightest Formulation

Convex Hull (CH)
Smallest convex feasible region containing all feasible integer points

- The *convex hull* problem solves an MIP as an LP
 - Each vertex satisfies the integrality constraints
 - So an LP optimum is also an MIP optimum

- Unfortunately,

Convex Hull (CH)

Smallest convex feasible region containing all feasible integer points

- The convex hull problem solves an MIP as an LP
 - Each vertex satisfies the integrality constraints
 - So an LP optimum is also an MIP optimum
- Unfortunately, the convex hull is typically too difficult to obtain
 - To solve an MIP is usually easier than trying to find its convex hull

Choosing The Best Formulation
Measuring The Tightness

Integrality Gap (IGap)
Relative distance between MIP and LP optima

\[
\text{IGap}_{LP1} = \frac{Z_{MIP} - Z_{LP1}}{Z_{MIP}} > \text{IGap}_{LP2} = \frac{Z_{MIP} - Z_{LP2}}{Z_{MIP}}
\]

\[\downarrow\]
As an MIP problem:
LP2 is expected to be solved faster than LP1
Choosing The Best Formulation
Measuring The Tightness

Integrality Gap (IGap)
Relative distance between MIP and LP optima

\[
\text{IGap}_{\text{LP1}} = \frac{Z_{\text{MIP}} - Z_{\text{LP1}}}{Z_{\text{MIP}}} > \text{IGap}_{\text{LP2}} = \frac{Z_{\text{MIP}} - Z_{\text{LP2}}}{Z_{\text{MIP}}} > \\
\text{IGap}_{\text{CH}} = \frac{Z_{\text{MIP}} - Z_{\text{CH}}}{Z_{\text{MIP}}} = 0
\]

\[\downarrow\]
As an MIP problem:
LP2 is expected to be solved faster than LP1
CH will be solved way faster than LP2
Concepts: Tightness and Compactness

- **Tightness**: defines the search space (relaxed feasible region) that the solver needs to explore to find the solution.
- **Compactness (problem size)**: defines the searching speed (data to process) that the solver takes to find the solution.
Concepts: Tightness and Compactness

- **Tightness**: defines the search space (relaxed feasible region) that the solver needs to explore to find the solution
- **Compactness (problem size)**: defines the searching speed (data to process) that the solver takes to find the solution
- **Convex hull**: The tightest formulation \Rightarrow MIP solved as LP
Tightening an MIP Formulation

- The most common strategy is adding cuts
 - In fact, this is the most effective strategy of current MIP solvers\(^4\)

Tightening an MIP Formulation

- The most common strategy is adding cuts
 - In fact, this is the most effective strategy of current MIP solvers
 - They should be added as cuts in the B&B\(^5,6\) ⇒ ↓ Time
 - and not directly to the model, huge number of inequalities ⇒ ↑ Time

Tightening an MIP Formulation

- The most common strategy is adding cuts

- In fact, this is the most effective strategy of current MIP solvers\(^4\)
- They should be added as cuts in the B&B\(^5,6\) ⇒ \(\downarrow\) Time
- and not directly to the model, huge number of inequalities ⇒ \(\uparrow\) Time
- Trade-off: Tightness vs. Compactness

Tightening an MIP Formulation

- The most common strategy is adding cuts
 - In fact, this is the most effective strategy of current MIP solvers\(^4\)
 - They should be added as cuts in the B&B\(^5,6\) ⇒ ↓ Time
 - and not directly to the model, huge number of inequalities ⇒ ↑ Time
 - Trade-off: Tightness vs. Compactness

- Improving the MIP formulation
 - Provide the *convex hull* for some set of constraints
 - If available, use the *convex hull* for some set of constraints

Outline

1 Introduction

2 Good and Ideal MIP formulations

3 Tight & Compact (TC) UC Formulations

4 Case Studies
 - Deterministic Self-UC
 - Stochastic UCs: Different Solvers
 - Stochastic UCs: IEEE-118 Bus System

5 Conclusions
Let’s focus on the core of UC formulations:

- Min/max outputs
- SU & SD ramps
- Minimum up/down (TU/TD) times
Tight and Compact (TC) Formulation

- Let’s focus on the core of UC formulations:
 - Min/max outputs
 - SU & SD ramps
 - Minimum up/down (T_U/T_D) times, convex hull already available\(^7\)

- The whole formulation can be found in the paper TC-UC\(^8\) and the convex hull proof in gentile et al.\(^9\)

\(^7\) D. Rajan and S. Takriti, “Minimum up/down polytopes of the unit commitment problem with start-up costs,” IBM, Research Report RC23628, Jun. 2005

Formulation for a generating unit (I)

- Generation limits taking into account:

\[
pt \leq \left(P - \bar{P} \right) u_t - \left(P - SD \right) w_{t+1} - \max \left(SD - SU, 0 \right) v_t \quad \forall t
\]

\[
p_t \leq \left(P - \bar{P} \right) u_t - \left(P - SU \right) v_t - \max \left(SU - SD, 0 \right) w_{t+1} \quad \forall t
\]

Total generation = \(P \cdot u_t + p_t \).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_t)</td>
<td>(P)</td>
</tr>
<tr>
<td>(u_t)</td>
<td>(P)</td>
</tr>
<tr>
<td>(v_t)</td>
<td>(\bar{P})</td>
</tr>
<tr>
<td>(w_t)</td>
<td>(SU)</td>
</tr>
<tr>
<td></td>
<td>(SD)</td>
</tr>
<tr>
<td></td>
<td>Minimum power output</td>
</tr>
<tr>
<td></td>
<td>Maximum power output</td>
</tr>
<tr>
<td></td>
<td>Startup ramp</td>
</tr>
<tr>
<td></td>
<td>Shutdown ramp</td>
</tr>
</tbody>
</table>
Formulation for a generating unit (II)

- Logical relationship:

\[u_t - u_{t-1} = v_t - w_t \quad \forall t \] \hspace{1cm} (3)
\[v_t \leq u_t \quad \forall t \] \hspace{1cm} (4)
\[w_t \leq 1 - u_t \quad \forall t \] \hspace{1cm} (5)

where (4) and (5) avoid the simultaneous startup and shutdown.

- Variable bounds

\[p_t \geq 0 \quad \forall t \] \hspace{1cm} (6)
\[0 \leq u_t, v_t, w_t \leq 1 \quad \forall t \] \hspace{1cm} (7)
Tightness of the Formulation

Let’s study the polytope (1)-(7) using PORTA10:

- PORTA enumerates all vertices of a convex feasible region

10T. Christof and A. Löbel, “PORTA: POlyhedron representation transformation algorithm, version 1.4.1,” Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany, 2009
Tight & Compact UCs

Tightness of the Formulation

Let’s study the polytope (1)-(7) using PORTA10:

- PORTA enumerates all vertices of a convex feasible region
- Example: 3 periods and $\bar{P} = 200$, $P = SU = SD = 100$ for:
 - Case 1: $TU = TD = 1$
 - Case 2: $TU = TD = 2$

10 T. Christof and A. Löbel, “PORTA: POlyhedron representation transformation algorithm, version 1.4.1,” Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany, 2009
Case 1: Providing The Convex Hull

Formulation:

\[
p_t \leq \left(P - \bar{P} \right) u_t - \left(P - SD \right) w_{t+1} - \max (SD - SU, 0) v_t \tag{1}
\]

\[
p_t \leq \left(P - \bar{P} \right) u_t - \left(P - SU \right) v_t - \max (SU - SD, 0) w_{t+1} \tag{2}
\]

\[
u_t - u_{t-1} = v_t - w_t \tag{3}
\]

\[
v_t \leq u_t \tag{4}
\]

\[
w_t \leq 1 - u_t \tag{5}
\]

PORTA results for \((TU = TD = 1)\)
Case 1: Providing The Convex Hull

Formulation:

\[p_t \leq (\overline{P} - P) u_t - (\overline{P} - SD) w_{t+1} \]
\[- \max (SD - SU, 0) v_t \] (1)

\[p_t \leq (\overline{P} - P) u_t - (\overline{P} - SU) v_t \]
\[- \max (SU - SD, 0) w_{t+1} \] (2)

\[u_t - u_{t-1} = v_t - w_t \] (3)

\[v_t \leq u_t \] (4)

\[w_t \leq 1 - u_t \] (5)

PORTA results for \((TU = TD = 1)\):

\[u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3:\]

DIM = 10

CONV SECTION

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

END
Case 1: Providing The Convex Hull

Formulation:

\[p_t \leq (\overline{P} - \underline{P}) u_t - (\overline{P} - SD) w_{t+1} \]
\[- \max (SD - SU, 0) v_t \quad (1) \]

\[p_t \leq (\overline{P} - \underline{P}) u_t - (\overline{P} - SU) v_t \]
\[- \max (SU - SD, 0) w_{t+1} \quad (2) \]

\[u_t - u_{t-1} = v_t - w_t \quad (3) \]

\[v_t \leq u_t \quad (4) \]

\[w_t \leq 1 - u_t \quad (5) \]

All vertices are integer

\[\downarrow \]

Convex Hull

PORTA results for \((TU = TD = 1)\)

\[u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3:\]

DIM = 10

CONV_SECTION

(1) 0 0 0 0 0 0 0 0 0 0
(2) 0 0 1 0 1 0 0 0 0 0
(3) 1 0 0 0 0 1 0 0 0 0
(4) 0 1 0 1 0 0 1 0 0 0
(5) 0 1 1 1 0 0 0 0 0 0
(6) 0 1 1 0 0 0 0 0 100 0
(7) 1 1 0 0 0 0 1 0 0 0
(8) 1 1 0 0 0 0 1 100 0 0
(9) 1 1 1 0 0 0 0 0 0 0
(10) 1 1 1 0 0 0 0 0 0 100
(11) 1 1 1 0 0 0 0 0 100 0
(12) 1 1 1 0 0 0 0 0 100 100
(13) 1 1 1 0 0 0 0 100 0 0
(14) 1 1 1 0 0 0 0 100 0 100
(15) 1 1 1 0 0 0 0 100 100 0
(16) 1 1 1 0 0 0 0 100 100 100
(17) 1 0 1 0 1 1 0 0 0 0

END
Case 2: Providing and Using Convex Hulls (I)

Formulation + \(TU/TD \) Convex hull:

\[
p_t \leq (\overline{P} - \underline{P}) u_t - (\overline{P} - SD) w_{t+1} \\
- \max (SD - SU, 0) v_t \tag{1}
\]

\[
p_t \leq (\overline{P} - \underline{P}) u_t - (\overline{P} - SU) v_t \\
- \max (SU - SD, 0) w_{t+1} \tag{2}
\]

\[
u_t - u_{t-1} = v_t - w_t \tag{3}
\]

\[
\sum_{i=t-TU+1}^{t} v_i \leq u_t \tag{4}
\]

\[
\sum_{i=t-TD+1}^{t} w_i \leq 1 - u_t \tag{5}
\]
Case 2: Providing and Using Convex Hulls (I)

Formulation + \(TU/TD \) Convex hull:

\[
p_t \leq (\overline{P} - \underline{P}) u_t - (\overline{P} - SD) w_{t+1} - \max{(SD-SU, 0)} v_t \quad (1)
\]

\[
p_t \leq (\overline{P} - \underline{P}) u_t - (\overline{P} - SU) v_t - \max{(SU-SD, 0)} w_{t+1} \quad (2)
\]

\[
u_t - u_{t-1} = v_t - w_t \quad (3)
\]

\[
\sum_{i=t-TU+1}^{t} v_i \leq u_t \quad (4)
\]

\[
\sum_{i=t-TD+1}^{t} w_i \leq 1 - u_t \quad (5)
\]

How to remove the fractional vertices?

PORTA results for \(TU = TD = 2 \)

\begin{verbatim}
PORTA results for (TU = TD = 2)

u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3:

DIM = 10

CONV_SECTION

(1) 0 0 0 0 0 0 0 0 0 0
(2) 1/2 1 1/2 1/2 0 0 1/2 0 50 0
(3) 1/2 1 1/2 1/2 0 0 1/2 0 50 50
(4) 1/2 1 1/2 1/2 0 0 1/2 50 50 0
(5) 1/2 1 1/2 1/2 0 0 1/2 50 50 50
(6) 0 0 1 0 1 0 0 0 0 0
(7) 1 0 0 0 1 0 0 0 0 0
(8) 0 1 1 1 0 0 0 0 0 0
(9) 0 1 1 1 0 0 0 0 0 100
(10) 1 1 0 0 0 1 0 0 0 0
(11) 1 1 0 0 0 1 100 0 0 0
(12) 1 1 1 0 0 0 0 0 0 0
(13) 1 1 1 0 0 0 0 0 0 100
(14) 1 1 1 0 0 0 0 0 100 0
(15) 1 1 1 0 0 0 0 100 100 0
(16) 1 1 1 0 0 0 0 100 0 0
(17) 1 1 1 0 0 0 0 100 0 100
(18) 1 1 1 0 0 0 0 100 100 0
(19) 1 1 1 0 0 0 0 100 100 100

END
\end{verbatim}
Case 2: Providing and Using Convex Hulls (II)

Reformulating (1) and (2) for $TU \geq 2$:

\[p_t \leq (P - P) u_t - (P - SD) w_{t+1} \]
\[\max (SD - SU, 0) v_t \]

\[p_t \leq (P - P) u_t - (P - SU) v_{t+1} \]
\[\max (SU - SD, 0) v_{t+1} \]

\[p_t \leq (P - P) u_t - (P - SU) v_t \]
\[- (P - SD) w_{t+1} \]

\[u_t - u_{t-1} = v_t - w_t \]

\[\sum_{i=t-TU+1}^{t} v_i \leq u_t \]

\[\sum_{i=t-TD+1}^{t} w_i \leq 1 - u_t \]

PORTA results for $(TU = TD = 2)$

\[u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3: \]

\[\text{DIM} = 10 \]

CONV_SECTION

(1) 0 0 0 0 0 0 0 0 0 0
(2) 0 0 1 0 1 0 0 0 0 0
(3) 1 0 0 0 0 1 0 0 0 0
(4) 0 1 1 1 0 0 0 0 0 0
(5) 0 1 1 1 0 0 0 0 0 100
(6) 1 1 0 0 0 1 0 0 0 100
(7) 1 1 0 0 0 0 1 100 0 0
(8) 1 1 1 0 0 0 0 0 0 0
(9) 1 1 1 0 0 0 0 0 0 100
(10) 1 1 1 0 0 0 0 0 100 0
(11) 1 1 1 0 0 0 0 0 100 100
(12) 1 1 1 0 0 0 0 100 0 0
(13) 1 1 1 0 0 0 0 100 0 100
(14) 1 1 1 0 0 0 0 100 100 0
(15) 1 1 1 0 0 0 0 100 100 100

END
Case 2: Providing and Using Convex Hulls (II)

Reformulating (1) and (2) for $TU \geq 2$:

$\forall t \in [0, T_U - 1]$

$$p_t \leq (P - P) u_t - (P - P) w_{t+1}$$

$$\max(SD, SU, 0) v_t$$

(1)

$$p_t \leq (P - P) u_t - (P - P) w_{t+1}$$

$$\max(SU, SD, 0) v_t$$

(2)

$$p_t \leq (P - P) u_t - (P - P) w_{t+1}$$

$$- (P - SD) w_{t+1}$$

(8)

$$u_t - u_{t-1} = v_t - w_t$$

(3)

$$\sum_{i=t-TU+1}^{t} v_i \leq u_t$$

(4)

$$\sum_{i=t-TD+1}^{t} w_i \leq 1 - u_t$$

(5)

⇒ Convex Hull

PORTA results for $(TU = TD = 2)$

$u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3$:

DIM = 10

CONV_SECTION

(1) 0 0 0 0 0 0 0 0 0 0
(2) 0 0 1 0 1 0 0 0 0 0
(3) 1 0 0 0 0 1 0 0 0 0
(4) 0 1 1 1 0 0 0 0 0 0
(5) 0 0 1 1 1 0 0 0 0 0 100
(6) 1 1 0 0 0 0 1 0 0 0
(7) 1 1 0 0 0 0 1 100 0 0
(8) 1 1 1 0 0 0 0 0 0 0
(9) 1 1 1 0 0 0 0 0 0 100
(10) 1 1 1 0 0 0 0 0 0 100 0
(11) 1 1 1 0 0 0 0 0 0 100 100
(12) 1 1 1 0 0 0 0 100 0 0
(13) 1 1 1 0 0 0 0 100 0 0
(14) 1 1 1 0 0 0 0 100 100 0
(15) 1 1 1 0 0 0 0 100 100 100

END
Outline

1. Introduction
2. Good and Ideal MIP formulations
3. Tight & Compact (TC) UC Formulations
4. Case Studies
 - Deterministic Selft-UC
 - Stochastic UCs: Different Solvers
 - Stochastic UCs: IEEE-118 Bus System
5. Conclusions
Self-UC case Study

- **Case Study:** Self-UC for 10-units, for 32-512 days time span
- Basic constraints: max/min, SU/SD and TU/TD

All results are expressed as percentages of 1bin results
Case Studies

Determine Self-UC

Self-UC case Study

- **Case Study:** Self-UC for 10-units, for 32-512 days time span
 - Basic constraints: max/min, SU/SD and TU/TD
- Formulations tested – modeling the same MIP problem:
 - TC^{11}: Proposed Tight & Compact
 - $1bin^{12}$: 1-binary variable (u)
 - $3binTUTD^{13}$: 3-binary variable version (u,v,w) + TU/TD convex hull

All results are expressed as percentages of $1bin$ results

Case Study: Self-UC (I)

Results presented as percentages of 1_{bin}:

<table>
<thead>
<tr>
<th></th>
<th>3bin TUTD (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><78</td>
<td><48</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>89</td>
<td>72</td>
</tr>
<tr>
<td>Real Vars</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td>=300</td>
</tr>
</tbody>
</table>

\downarrow

TC is more Compact
Case Study: Self-UC (I)

Results presented as percentages of $1bin$:

<table>
<thead>
<tr>
<th></th>
<th>$3bin$ TUTD (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><78</td>
<td><48</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>89</td>
<td>72</td>
</tr>
<tr>
<td>Real Vars</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>$=300$</td>
<td>$=300$</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>34</td>
<td>$=0$</td>
</tr>
</tbody>
</table>

\downarrow

TC is Tighter and Simultaneously more Compact
Case Study: Self-UC (I)

Results presented as percentages of 1\textit{bin}:

<table>
<thead>
<tr>
<th></th>
<th>3\textit{bin} TUTD (%)</th>
<th>\textit{TC} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><78</td>
<td><48</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>89</td>
<td>72</td>
</tr>
<tr>
<td>Real Vars</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td>=300</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>34</td>
<td>=0</td>
</tr>
<tr>
<td>MIP runtime (speedup)</td>
<td>4.9 (20x)</td>
<td>0.107 (995x)</td>
</tr>
</tbody>
</table>

\[\downarrow \]

\textit{TC} is Tighter \textbf{and Simultaneously} more Compact
Case Study: Self-UC (II)

Results presented as percentages of 1bin:

<table>
<thead>
<tr>
<th></th>
<th>3bin TUTD (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><78</td>
<td><48</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>89</td>
<td>72</td>
</tr>
<tr>
<td>Real Vars</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td>=300</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>34</td>
<td>=0</td>
</tr>
<tr>
<td>MIP runtime</td>
<td>4.9</td>
<td>0.107</td>
</tr>
<tr>
<td>LP runtime</td>
<td>80</td>
<td>49.8</td>
</tr>
</tbody>
</table>

The TC formulation describe the convex hull then solving MIP (non-convex) as LP (convex)
Outline

1. Introduction

2. Good and Ideal MIP formulations

3. Tight & Compact (TC) UC Formulations

4. Case Studies
 - Deterministic Self-UC
 - Stochastic UCs: Different Solvers
 - Stochastic UCs: IEEE-118 Bus System

5. Conclusions
Stochastic UC: Case Study

- 10 generating units for a time span of 2 days
- 10 to 200 scenarios in demand
Stochastic UC: Case Study

- 10 generating units for a time span of 2 days
- 10 to 200 scenarios in demand
- Comparing TC, $1bin$, $3binTUTD$ and Two additional formulations Sh^{14} and $3bin^{15}$

Stochastic UC: Case Study

- 10 generating units for a time span of 2 days
- 10 to 200 scenarios in demand
- Comparing \(TC, 1\text{bin}, 3\text{bin TUTD} \) and Two additional formulations \(Sh^{14} \) and \(3\text{bin}^{15} \)
- Different Solvers
 - Cplex 12.6.0
 - Gurobi 5.6.2
 - XPRESS 25.01.07
- Stop criteria:
 - Time limit: 5 hours or
 - Optimality tolerance: 0.1 %

Stochastic: Cplex
Stochastic: Cplex

TC deals with 200 scenarios within the time that others deal with 40
Stochastic: Gurobi

TC deals with 200 scenarios within the time that others deal with 50
Stochastic: XPRESS

TC deals with 200 scenarios within the time that others deal with 80
Outline

1. Introduction
2. Good and Ideal MIP formulations
3. Tight & Compact (TC) UC Formulations
4. Case Studies
 - Deterministic Selft-UC
 - Stochastic UCs: Different Solvers
 - Stochastic UCs: IEEE-118 Bus System
5. Conclusions
IEEE-118 Bus System

- 54 thermal units; 118 buses; 186 transmission lines; 91 loads
 - 24 hours time span
 - 3 wind farms, 20 wind power scenarios
 - Stop Criteria in Cplex 12.6.0
 - 0.05% opt. tolerance or 24h time limit
UC performance comparisons (I)

<table>
<thead>
<tr>
<th></th>
<th>Traditional Energy-Block Scheduling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3bin TUTD(^ {16})</td>
<td>TC</td>
</tr>
<tr>
<td>o.f. [k$]</td>
<td>829.04</td>
<td>829.02</td>
</tr>
<tr>
<td>opt.tol [%]</td>
<td>0.224</td>
<td>0.023</td>
</tr>
<tr>
<td>IntGap [%]</td>
<td>1.27</td>
<td>0.58</td>
</tr>
</tbody>
</table>

- Compared with 3bin TUTD, TC:
 - lowered IntGap by 53.3%

Case Studies Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (I)

<table>
<thead>
<tr>
<th></th>
<th>Traditional Energy-Block Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3binTUTD(^{16})</td>
</tr>
<tr>
<td>o.f. [k$]</td>
<td>829.04</td>
</tr>
<tr>
<td>opt.tol [%]</td>
<td>0.224</td>
</tr>
<tr>
<td>IntGap [%]</td>
<td>1.27</td>
</tr>
<tr>
<td>MIP runtime [s]</td>
<td>86400</td>
</tr>
</tbody>
</table>

Compared with 3binTUTD, TC:

- lowered IntGap by 53.3%
- is more than 420x faster

UC performance comparisons (II)

<table>
<thead>
<tr>
<th></th>
<th>Traditional Energy-Block Scheduling</th>
<th>3binTUTD(^{17})</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>o.f. [k$]</td>
<td>829.04</td>
<td>829.02</td>
<td></td>
</tr>
<tr>
<td>opt.tol [%]</td>
<td>0.224</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>IntGap [%]</td>
<td>1.27</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>MIP runtime [s]</td>
<td>86400</td>
<td></td>
<td>206.5</td>
</tr>
<tr>
<td>LP runtime [s]</td>
<td>246.76</td>
<td>22.03</td>
<td></td>
</tr>
</tbody>
</table>

- TC solved the MIP before 3binTUTD solved the LP
- within the required opt. tolerance (0.05%)

UC performance comparisons (III)

<table>
<thead>
<tr>
<th></th>
<th>Traditional Energy-based UC</th>
<th>Power-Based UC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3binTUTD</td>
<td></td>
</tr>
<tr>
<td>o.f. [k$]</td>
<td>829.04</td>
<td>829.02</td>
</tr>
<tr>
<td>opt.tol [%]</td>
<td>0.224</td>
<td>0.023</td>
</tr>
<tr>
<td>IntGap [%]</td>
<td>1.27</td>
<td>0.58</td>
</tr>
<tr>
<td>MIP runtime [s]</td>
<td>86400</td>
<td>206.5</td>
</tr>
<tr>
<td>LP runtime [s]</td>
<td>246.76</td>
<td>22.03</td>
</tr>
</tbody>
</table>

- **P-TC**\(^{18}\) has a more detailed and accurate UC representation

UC performance comparisons (III)

<table>
<thead>
<tr>
<th></th>
<th>Traditional Energy-based UC</th>
<th>Power-Based UC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3binTUTD</td>
<td>TC</td>
</tr>
<tr>
<td>o.f. [k$]</td>
<td>829.04</td>
<td>829.02</td>
</tr>
<tr>
<td>opt.tol [%]</td>
<td>0.224</td>
<td>0.023</td>
</tr>
<tr>
<td>IntGap [%]</td>
<td>1.27</td>
<td>0.58</td>
</tr>
<tr>
<td>MIP runtime [s]</td>
<td>86400</td>
<td>206.5</td>
</tr>
<tr>
<td>LP runtime [s]</td>
<td>246.76</td>
<td>22.03</td>
</tr>
</tbody>
</table>

- **P-TC**\(^{18}\) has a more detailed and accurate UC representation
 - it solved 100x faster than 3binTUTD
 - its UC core is also a convex hull\(^{19}\)

Outline

1. Introduction

2. Good and Ideal MIP formulations

3. Tight & Compact (TC) UC Formulations

4. Case Studies
 - Deterministic Selft-UC
 - Stochastic UCs: Different Solvers
 - Stochastic UCs: IEEE-118 Bus System

5. Conclusions
Conclusions (I)

- **Beware** of what matters in good MIP formulations
 - **Tightness & Compactness**
Conclusions (I)

- **Beware** of what matters in good MIP formulations
 - **Tightness & Compactness**
 - ↑ Binaries ⇒ ↑ Solving time **False myth**
Conclusions (I)

- **Beware** of what matters in good MIP formulations
 - **Tightness & Compactness**
 - ↑ Binaries ⇒ ↑ Solving time **False myth**
- **Use the convex hull** of some set of constraints
Conclusions (I)

- **Beware** of what matters in good MIP formulations
 - **Tightness & Compactness**
 - ↑ Binaries ⇒ ↑ Solving time **False myth**
- **Use the convex hull** of some set of constraints
 - Minimum up/down times\(^{20}\)
 - Unit operation in Energy-based UC\(^{21}\)
 - Unit operation in Power-based UC\(^{22}\)
 - ⇒ ↓ solving time by **simultaneously T&Cing** the final UCs\(^{23,24}\)

Conclusions (II)

- **Better UC core in stochastic UCs** ⇒
 - Critical solving time reductions
 - Even when the UC is modeled in more detail, i.e., P-UC
Conclusions (II)

- **Better UC core in stochastic UCs** ⇒
 - Critical solving time reductions
 - even when the UC is modeled in more detail, i.e., P-UC

- **If convex hulls** are not available ⇒
 - Create simultaneously tight and compact models
 - by reformulating the problem, e.g., CCGTs\(^{25}\)
 - **Key hint**: start removing all big-M parameters

Conclusions (II)

■ **Better UC core** in stochastic UCs ⇒
 ■ Critical solving time reductions
 ■ even when the UC is modeled in more detail, i.e., P-UC

■ If *convex hulls* are not available ⇒
 ■ Create simultaneously tight and compact models
 ■ by reformulating the problem, e.g., CCGTs\(^{25}\)
 ■ **Key hint:** start removing all big-M parameters
 ■ Create tight cuts
 ■ **Don’t add them** directly to the model
 ■ Use them as **cuts in the B&B algorithm**\(^{26,27}\) ⇒ ↓ time

Questions

Thank you for your attention

Contact Information:
g.a.moralesespama@tudelft.nl
For Further Reading

For Further Reading (cont.)

For Further Reading (cont.)

For Further Reading (cont.)

Power-Based UC

Two main features are included:

- Schedules Power instead of Energy (for feasibility). **To avoid:**
 - Infeasible energy delivery\(^{28}\)
 - Overestimated ramp availability\(^{29}\)

Power-Based UC

Two main features are included:

- Schedules Power instead of Energy (for feasibility). To avoid:
 - Infeasible energy delivery\(^\text{28}\)
 - Overestimated ramp availability\(^\text{29}\)

- Includes startup (SU) and shutdown (SD) power trajectories
 - SU & SD ramps are deterministic events in day-ahead UCs
 - Ignoring them change commitment decisions and increase costs\(^\text{21,30}\)

Power-Based UC

Two main features are included:

- Schedules Power instead of Energy (for feasibility). To avoid:
 - Infeasible energy delivery28
 - Overestimated ramp availability29

- Includes startup (SU) and shutdown (SD) power trajectories
 - SU & SD ramps are deterministic events in day-ahead UCs
 - Ignoring them change commitment decisions and increase costs21,30

- The convex hull of the Power-Based UC for basic operating constraints is provided31.

Case Study: Self-UC (II)

Performance of the Energy-Based formulations:

<table>
<thead>
<tr>
<th></th>
<th>$3binTUTD$ (%)</th>
<th>TC (%)</th>
<th>$R-TC$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><78</td>
<td><48</td>
<td><56</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>89</td>
<td>72</td>
<td>94</td>
</tr>
<tr>
<td>Real Vars</td>
<td>33.3</td>
<td>33.3</td>
<td>66.7</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td>=300</td>
<td>=300</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>34</td>
<td>=0</td>
<td>=0</td>
</tr>
<tr>
<td>MIP runtime</td>
<td>4.9</td>
<td>0.107</td>
<td>0.104</td>
</tr>
<tr>
<td>MIP run (best-worst)</td>
<td>0.46 – 92</td>
<td>0.011 – 4.4</td>
<td>0.012 – 3.6</td>
</tr>
<tr>
<td>LP runtime</td>
<td>80</td>
<td>49.8</td>
<td>45.9</td>
</tr>
</tbody>
</table>
Case Study: Self-UC (II)

Performance of the Energy-Based formulations:

<table>
<thead>
<tr>
<th></th>
<th>3bin TUTD (%)</th>
<th>$T\text{C}$ (%)</th>
<th>$R-T\text{C}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><78</td>
<td><48</td>
<td><56</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>89</td>
<td>72</td>
<td>94</td>
</tr>
<tr>
<td>Real Vars</td>
<td>33.3</td>
<td>33.3</td>
<td>66.7</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td>=300</td>
<td>=300</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MIP runtime</td>
<td>4.9</td>
<td>0.107</td>
<td>0.104</td>
</tr>
<tr>
<td>MIP run (best-worst)</td>
<td>0.46 – 92</td>
<td>0.011 – 4.4</td>
<td>0.012 – 3.6</td>
</tr>
<tr>
<td>LP runtime</td>
<td>80</td>
<td>49.8</td>
<td>45.9</td>
</tr>
</tbody>
</table>

The $T\text{C}$ formulations describe the *convex hull* then solving MIP (non-convex) as LP (convex)
Outline

- UC for 40 power system mixes
UC for 40 power system mixes

- **Case Study B**: UC for 40 power system mixes, from 28 to 1870 units\(^{32}\)
 - Including demand, ramps, reserves, variable SU costs

Integrality Gap: Small Cases 1-10
280-540 units x 1 day, OptTol: 0.001

Geometric Averages: 3bin 64%; TC 35%
Conclusions

UC for 40 power system mixes

CPU Time: Small Cases 1-10

280-540 units x 1 day, OptTol: 0.001

Geometric Averages: 3bin 36%; TC 12%
Integrality Gap: Large Cases 11-20

1320-1870 units x 1 day, OptTol: 0.01

Geometric Averages:
- 3bin 75%
- TC 43%
CPU Time: Large Cases 11-20
1320-1870 units x 1 day, OptTol: 0.01

Geometric Averages: 3bin 45%; TC 5%
UC for 40 power system mixes

Results presented as percentages of $1bin$:

<table>
<thead>
<tr>
<th>Constraints</th>
<th>$3bin TUTD (%)$</th>
<th>$TC (%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonzeros</td>
<td>~ 100</td>
<td>< 35</td>
</tr>
<tr>
<td>Real Vars</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>300</td>
<td>< 500</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>72</td>
<td>40</td>
</tr>
</tbody>
</table>
Conclusions

UC for 40 power system mixes

Results presented as percentages of 1bin:

<table>
<thead>
<tr>
<th></th>
<th>3bin TUTD (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><99</td>
<td><40</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>~100</td>
<td><35</td>
</tr>
<tr>
<td>Real Vars</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td><500</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>72</td>
<td>40</td>
</tr>
</tbody>
</table>

⇓

TC is Tighter and Simultaneously more Compact
UC for 40 power system mixes

Results presented as percentages of 1bin:

<table>
<thead>
<tr>
<th>Constraints</th>
<th>3bin TUTD (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><99</td>
<td><40</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>~100</td>
<td><35</td>
</tr>
<tr>
<td>Real Vars</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td><500</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>72</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>Average runtime</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>runtime (best-worst)</td>
<td>11 – 269</td>
</tr>
</tbody>
</table>

⇓

TC is Tighter and Simultaneously more Compact
UC for 40 power system mixes

Results presented as percentages of 1\textit{bin}:

<table>
<thead>
<tr>
<th></th>
<th>3bin TUTD (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td><99</td>
<td><40</td>
</tr>
<tr>
<td>Nonzeros</td>
<td>~100</td>
<td><35</td>
</tr>
<tr>
<td>Real Vars</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Bin Vars</td>
<td>=300</td>
<td><500</td>
</tr>
<tr>
<td>Integrality Gap</td>
<td>72</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average runtime</td>
<td>71</td>
<td>7</td>
</tr>
<tr>
<td>runtime (best-worst)</td>
<td>11 – 269</td>
<td>2 – 57</td>
</tr>
<tr>
<td>Runtime Small Cases</td>
<td>67</td>
<td>11</td>
</tr>
<tr>
<td>Runtime Large Cases</td>
<td>77</td>
<td>4.5</td>
</tr>
</tbody>
</table>

\[\downarrow\]

\textbf{TC is Tighter and Simultaneously more Compact}