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Introduction and general description 

GECAD – Polytechnic of Porto – proposes the optimization of two large-scale centralized Day-
Ahead energy resource scenarios. The aim is to use stochastic optimization (e.g. PSO, GA, SA, 
ABC, etc.) to mitigate the exponential execution time using traditional mathematical tools. 
Even with state-of-the-art solvers’ technology these scenarios use considerable amount of 
time to solve. We wish to solve these scenarios fast, reliable and with satisfactory solutions. 
The use of stochastic optimization may provide interesting answers and further discussion in 
the community. 

The energy aggregator can procure energy needs from several resources and the electricity 
market and makes revenue from reselling energy to its customers. In addition, it may use its 
own assets, e.g. storage units, to supply the load demand. The energy aggregator establishes 
energy contracts with those who seek electricity supply, e.g. residential and industry 
customers. It is designated here as a bilateral contract, i.e. between the aggregator and the 
final end-user. In this case, it is assumed that the aggregator establishes a fixed price for fixed 
loads and EVs charging. The fixed price is set independently for each consumer, based on 
single-tariffs. The main idea is that the optimization software can perform the energy resource 
scheduling of the involved resources in the day-ahead context for the 24 hours of the following 
day. In addition, V2G is also possible. 

 

Overview of the aggregator energy management problem 

1.1. Objective function 

The envisaged problem is a hard combinatorial Mixed-Integer Non-Linear Programming 
(MINLP) problem due to high number of continuous, discrete and binary variables and network 
non-linear equations. The objective of the aggregator is to maximize profits, i.e. income (In) 
minus operation cost (OC). This can be rewritten as minimization function Z, as show in (1). 

-Minimize Z OC In=  (1) 

The minimum value of Z (hopefully negative) is the profit of the energy aggregator. If Z is 
negative it is expected to have a profit, otherwise OC are higher than Income. Thus, the profit 
is P=-Z, where P is the profit. Nevertheless, for the goal in optimization terms is to obtain the 
minimum value of Z in the metaheuristics form. 
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The aggregator can receive his income (In) from four sources, as illustrated in (2): the revenue 
from the consumers demand; the energy to sell to the electricity market; the revenue from the 
charging process of storage units and the charging of EVs. 
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The parameters are described by: NE is the number of ESSs; NL is the number of loads; NM is 
the number of markets; NV is the number of EVs; MPLoad(L,t) is the price of load L in period t 
(m.u.); MPSell(M,t) is the price that market M pays in period t (m.u.); MPCharge(E,t) is the price for 
the charge process of ESS E in period t (m.u.); MPCharge(V,t) is the price for the charge process of 
EV V in period t (m.u.) 

The variables are described by: In is the aggregator income (m.u.); PCharge(E,t,) is the active 
power charge of ESS E in period t (MW); PCharge(V,t) is the active power charge of EV V in period 
t (MW); PLoad(L,t) is the active power demand of load L in period t (MW); PSell(M,t) is the active 
power sale to market M in period t (MW) 

Function OC, defined in (3), represents the operation cost of the resources managed by the 
VPP. It considers the cost with Distributed Generation (DG), external suppliers, discharge of 
storage and EVs, Demand Response (DR) programs, penalization with non-supplied demand 
and penalization with DG units’ generation curtailment. 
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The indices are represented by: E is an index of ESSs; I is an index of DG units; L is an index of 
loads; M is an index of market/energy buyer; S is an index of external suppliers; t is an index of 
time periods; V is an index of EVs;  

The parameters are described by: NDG is the number of DG units; NS is the number of external 
electricity suppliers; CDG(I,t) is the generation price of DG unit I in period t (m.u.); CSupplier(S,t) is 
the energy price of external supplier S in period t (m.u.); CLoadDR(L,t)  is the load reduction (DR) 
cost of load L in period t (m.u.); CDischarge(E,t) is the discharging cost of ESS E in period t (m.u.); 
CDischarge(V,t) is the discharging cost of EV V in period t (m.u.); CNSD(L,t) is the non-supplied 
demand (NSD) cost of load L in period t (m.u.); CGCP(I,t) is the curtailment cost of DG unit I in 
period t (m.u.). 
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The variables are described by: OC is the total operation cost (m.u); PDG(I,t) is the active power 
generation of DG unit I in period t (MW); PSupplier(S,t,) is the active power generation of the 
external supplier S in period t (MW); PLoadDR(L,t) is the active power reduction of load L in period 
t (MW); PNSD(L,t) is the active power of Non-supplied demand for load L in period t (MW); 
PGCP(I,t) is the generation curtailment power of DG unit I in period t (MW);  

The problem constraints are similar to [1]. The problem is mainly constrained by the network 
equations, namely active and reactive powers balance, voltage and angle limits, DG generation 
and supplier limits in each period, ESS capacity, charge and discharge rate limits, EVs capacity, 
EVs’ trips requirements, charge and discharge efficiency and rate limits. A full AC power flow is 
used to check the network conditions [2]. 

1.2. Metaheuristic method framework 

In this competition, the method of choice used by the participants to solve the presented 
problem must be a metaheuristic-based algorithm. The structure adopted in the competition is 
described in this document and follows the structure presented below.  

 
*the code should/cannot be changed 

1.3. Fitness function 

The fitness function f’ (4) considers the objective Z of the aggregator (see (1)), plus the 
summation of the penalties found during evaluation of the solution. In this case gi is the value 
of the i-th constraint (equality and inequality) and ρ is the configurable penalty factor (high 
value). See section 3 for instructions regarding fitness function and how penalties work. 

Encrypted programs* 

Meta-heuristic code 
(user-defined) 

Meta-heuristic 
parameters         

(user-defined) 

Encrypted programs 
(common apps*) 

Main program        
(call meta-heuristic) callMH 

callDatabase 

MHparameters 

MH code 

fitnessFun_DER Radial network 
power flow 
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1.4. Some assumptions of the energy scheduling problem: 
 

1) The aggregator maximizes its profits (income minus costs) 
2) Electric vehicles can be controlled continuously (between 0 and max charge rate) 
3) The same assumption applies to the V2G principle (between 0 and max discharge rate) 
4) The stationary batteries or Energy Storage Systems (ESS) can be controlled 

continuously similar to the EVs/V2G 
5) The cost function of DG units is assumed to be linear 
6) It is assumed that the energy aggregator can submit bids to the electricity market. 
7) The market in which the aggregator participates can accept any bid amount 
8) Only one market is considered in the scenarios 
9) Forecast scenarios of EVs travels, wind/PV and other renewables are known in 

advance (1 scenario) 
 

1.5. Some notes on the implementation of the problem: 
1) Internally in the fitness function, it is assumed that the charge/discharge variables for 

the EVs are the same, but positive is charge value and negative is discharge to save 
computational memory 

2) The same principle describe above for EV applies for the stationary storage variables 
3) The market in which the aggregator participates can accept any bid amount 
4) Internally, the market value is positive for an offer (sale) and negative for a buy bid 
5) Direct repair of solution is used in the fitness function (see section 3.6) 

A maximum number of 50,000 evaluations is allowed in the competition. (Take into 
account that it is not the same as algorithm iterations). 
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2. Scenarios overview 
This section briefly describes the scenarios prepared for the competition. 
 
2.1. 33-bus scenario 

The first scenario considers a 12.66 kV 33-bus MV distribution network with 66 distributed 
generation units (DG), 10 external suppliers, 1 large wind unit, 15 storage units, 1800 gridable 
vehicles, 1 market and 32 loads with demand response (reduce). 

 33 –bus MV distribution network 

66 DGs 

10 external Suppliers 

1 large wind unit 

15 storage units 

1800 gridable EVs (V2G) 

1 market 

32 aggregated loads with demand response reduce program 

The above scenario using traditional tools (GAMS/MINLP) takes about 19 hours to solve in a 
state-of-the-art workstation (Intel(R) Xeon(R) CPU- E5-2620 v2 @ 2.10GHz with 16 GB RAM). 
The total number of equations reported by the software is 280,729 with 234,541 continuous 
and 88,380 binary variables. 

EQUATIONS      280,729 
SINGLE VARIABLES      234,541 
DISCRETE VARIABLES     88,380 
 
Total execution time: ~19 hours 
 

2.2. 180-bus scenario 

The second scenario considers a 180-bus 30 kV MV distribution network. With 116 DGs , 1 
external suppliers, 7 storage units, 6000 EVs, 1 market and 90 loads with demand response. 

 
 180-bus MV distribution network 

116 DGs 

1 external Suppliers 

7 storage units 

6000 gridable EVs (V2G) 

1 market 

 90 aggregated loads with demand response reduce program 



8 
 

The above scenario using traditional tools (GAMS/MINLP) takes more than 168 hours to solve 
in a state-of-the-art workstation (Intel(R) Xeon(R) CPU- E5-2620 v2 @ 2.10GHz with 16 GB 
RAM)  The total number of equations reported by the software is 910,033 with 763,033 
continuous and 290,568 binary variables. 

 

EQUATIONS      910,033 
SINGLE VARIABLES      763,033 
DISCRETE VARIABLES    290,568 
 
Total execution time: more than 168 hours (1 week) 
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3. Instructions for participants: 

These instructions include as example the metaheuristic differential search algorithm [3] 
implemented and adapted to the energy resource management (It has been modified by 
GECAD). 

It is important that the participants uses the following recommendations and structure to 
avoid issues in using the supplied datasets and codes. 

3.1. Master function /script 

callDSA.m (this is the main file, the name should be similar for the participants, e.g. callMH.m 
or masterScript.m)  

The code arrangement is up to the competitor but of course it should follow a very similar 
structure, like some functions that are mandatory to be used. 

clear all 
clc 
tTotalTime=tic; % lets track total computational time 
  
  
callDatabase % script to load the caseStudyData 
noRuns = 3; % Number of trials here 
% get DSA parameters from DSAparameters.m file 
DSAparameters 
  
otherParameters = 
setOtherParameters(caseStudyData,dsaParameters.nParticles); 
% set penalties 
otherParameters.ensPenalty=10000; % insufficient generation / energy 
not supplied 
otherParameters.voltagePenalty=10000; % bus voltage violations 
otherParameters.linesPenalty=10000; % rate capacity of lines violated 
  
[lowerBounds,upperBounds] = 
setVariablesBounds(caseStudyData,otherParameters); 
  
for iRuns=1:noRuns 
    tOpt=tic; 
    rand('state',sum(noRuns*100*clock))% ensure stochastic indpt 
trials 
    [ResDB(iRuns).solution, ResDB(iRuns).fitMaxVector, ... 
    ResDB(iRuns).objMaxVector, ResDB(iRuns).otherParameters] =... 
        
DSA(dsaParameters,caseStudyData,otherParameters,lowerBounds,upperBound
s); 
    ResDB(iRuns).tOpt=toc(tOpt); % time of each trial 
 
   writeBenchTables % changed (20/02/2017) 
 
 
 
end 
  
tTotalTime=toc(tTotalTime) 
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Your metaheuristic code should return to the main script the following variables:  

- solution: best candidate solution found (size: 1 x noVariables) vector 

- fitMaxVector: the value of the fitness over the iterations (size: 1xnoIterations) vector 

- objMaxVector: the actual value of the cost function without penalties (size: 2x noIterations) 
vector 

- otherParameters returned from the fitness function (check  

If the participant wants to change the default assigned penalties regarding constraint 
violations, please add these lines and change the value accordingly. A tweak is accepted in 
the competition as some optimal penalties (i.e. penalties that adapt during the 
optimizations) may be suggested by the participants. These penalties should be 1 or higher 
or the fitness function will not accept it. If you don’t want to change the default penalties 
just remove those lines from the master. Default penalties are 10,000 per each violation 
found. 

otherParameters.ensPenalty=10000; % insufficient generation / energy 
not supplied 
otherParameters.voltagePenalty=10000; % bus voltage violations 
otherParameters.linesPenalty=10000; % rate capacity of lines violated 
 

3.2. Loading the case study datasets 

#callDatabase script – important to load the caseStudyData struct with all the relevant dataset 
from the case study scenario. Participants don’t need to worry about the content of the case 
study and loading the files. It is already done. Just need to select in this file the scenario to test 
(33-bus) or (180-bus). The actual loading file for each case is encrypted. The data set variable is 
caseStudyData. 

% available scenarios 
% 33 for 33-bus network with 1800 EVs 
% 180 for 180-bus network with 6000 EVs 
  
scenario = 180; % choose 33 or 180 
  
switch scenario 
    case 33 
        callDatabase_33bus % encrypted file 
    case 180 
        callDatabase_180bus % encrypted file 
end 
 

3.3. Set parameters of the metaheuristic 

# DSAparameters.m file – file specific to the metaheuristic implemented by the participant 

dsaParameters.nParticles= 10; % population DSA, size_of_superorganism 
dsaParameters.maxIterations = 2000; % number of max iterations/epochs 
dsaParameters.method = 4; % 4: Elitist DSA (strategy 2) (E2-DSA) 
dsaParameters.fnc='fitnessFun_DER'; 
dsaParameters.p1_multiplier=0.3; 
dsaParameters.p2_multiplier=0.3; 
dsaParameters.scale_factor=1./gamrnd(1,0.5);   % pseudo-stable walk 
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dsaParameters.noIterationsToGap=400; % iterations to wait for improve 
dsaParameters.minIterations = 500; % number of min iterations/epochs 
dsaParameters.threshold = 1e-9; % threshold for fitness improvement 
NOTE: 50,000 evaluations per trial should be made. 

3.4. Set other necessary parameters and struct 

# setOtherParameters.m (encrypted) – this file should not be changed and it is encrypted, it 
just sets parameters and data needed for the fitness function to work. It is a mandatory 
function and should be run as illustrated in main function section. 

Participants have to pass the otherParameters struct to the fitnessFunction provided 

3.5. Set bounds of variables 

# setVariablesBounds.m (encrypted) – this file should not be changed and it is encrypted, it 
just sets the bounds of the problem variables. 

The outputs of this function [lowerBounds,upperBounds] – should be used by your MH to 
generate the initial solution and validate if the bounds are being respected in each iteration. 
You need to use lower/upper bounds vector to generate the in 

The order of the variables in the implemented codes are case-study dependent. However, they 
should have this order to respect the fitness function and given bounds: 

Variables name Length 
Generator active power (1) Number of DG generators and external suppliers 
Generator reactive powers (2) Number of DG generators and external suppliers 
Generator binaries (3) Number of DG generators and external suppliers 
EVs charge/discharge (4) Number of electric vehicles 
Demand response for each load (5) Number of loads 
Storage charge/discharge (6) Number of ESS units 
Market (7) Number of markets (one) 
Substation transformer tap (8) One 
 

These variables are repeated for each period in the solutions matrix (individual x periods): 

 Period 1 … Period T 
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
... 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
N 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

 

The following parameters are used to identifty the ids of each type of variables. These ids are 
used to locate the type of variables in solutions matrix (ids correspond to the columns while 
individuals to the rows). One individual is possible but not very common. 

otherParameters.ids.idsGen 
otherParameters.ids.idsQGen 
otherParameters.ids.idsXGen 
otherParameters.ids.idsV2G 
otherParameters.ids.idsLoadDR 
otherParameters.ids.idsStorage 
otherParameters.ids.idsMarket 
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otherParameters.ids.idsTAP 
 

   

Example of use: 

periods = caseStudyData.parameterData.numPeriods; 
nParticles = size(solutions,1); 
nVariables = size(solutions,2); 
idsV2G= otherParameters.ids.idsV2G; 
getPeriod = 2; 
tempIds=idsV2G+(nVariables/periods)*(getPeriod-1); 
solutions(:,tempIds) % EVs variables for period 2, all individuals 
solutions(2,tempIds) % EVs variables for period 2, second individual 

 

3.6. Fitness function (evaluation) 

# fitnessFun_DER.m (encrypted) – this is the evaluation function to be used by participants. 
Participants must use this function to evaluate the solutions of the metaheuristic.  

The fitnessFun_DER evaluates all the population at once, i.e. solutions matrix is a NxD 
dimesion matrix, in which N (rows) represents the number of individuals and D (columns) 
represent the number of variables of the optimization problem. 

function [solFitness, solObjFun, solutions, otherParameters] = 
fitnessFun_DER(solutions,caseStudyData,otherParameters) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%             Energy Resources Management fitness function 
% This function evaluates meta-heuristics solutions 
% The objective function is: maximize the profits of DER management. 
% "solutions" contains all the variables of the optimization problem 
% "solutions" is a NxD dimension matrix in which N represents the  
% number of particles (i.e. in the case of PSO) and D represents the  
% number of variables of the optimization problem (dimension of the  
% particle). 
% "caseStudyData" contains the data of the scenario 
% "otherParameters" contains auxiliary data such as ids for the sol 
vector 
%                              V4.0 
%                    25-11-2016  (last update) 
%   GECAD, ISEP, Polytechnic of Porto, 2016 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Note: Please refer to section 3.6.2 regarding the magnitude of each constraint violation. 

3.6.1. Direct repair of solutions: 

The fitnessFun_DER as some mechanisms to provide a fast convergence of the solutions, 
namely direct repair of solutions. This means that the solutions returned by the function are 
changed if some constraints are not satisfied. Some notes are explained: 

- Charge/discharge rates of EVs/ESS are adjusted taken into account the energy 
remaining the battery and the maximum capacity of the batteries (no need for 
penalties, as the correction are guaranteed) 
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- The demand/generation balance is made using a merit sort process 
- A power flow is run and the total system losses are compensated by generators 
- If the balance is not possible a penalty is thrown. 

Inputs:  

Solutions is a matrix with the variables of the problem (columns). Individuals are by rows. This 
variable comes from the MH population. Only 1 individual is also possible (one row). 

caseStudyData: as loaded by callDatabase function (see section 3.2) 

otherParameters: as loaded by setOtherParameters function (see subsection 3.3) 

Outputs: 

solFitness provides a row-vector with a fitness value for each candidate solution. 

 

solFitness output for 10 candidate solutions evaluated with the fitnessFun_DER.m 

solObjFun provides a matrix with the actual objective function (without penalties) for each 
candidate solution 

 

solObjFun output for 10 candidate solutions evaluated with the fitnessFun_DER.m 
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Note: As direct repair is being used in fitness function as outlined before, the repaired solutions 
vector is also returned (third). The participants must update their population in the MH side. 

Finally, otherParameters struct is used to return some valuable information captured during 
the evaluation phase in fitnessFun_DER. 

 

Example output of otherParameters struct returned with the fitnessFun_DER.m 

3.6.2. Penalties1 for the last candidate solutions evaluated by the fitness function 
• otherParameters.pensVoltageU: penalties regarding overvoltage (by solution and 

period) 
• otherParameters.pensVoltageL: penalties regarding undervoltage (by solution in each 

period) 
• otherParameters.pensMaxSlines: penalties regarding thermal capacity violation in 

lines (by solution and period) 
• otherParameters.penSlackBus: if generation is not enough, i.e. there is energy not 

supplied, a penalty is assigned (by candidate solution and period) 

In the MH function, please add some code like the one provided below after determining the 
best candidate solution, i.e. after evaluating the solutions. In the sample code below  indexbest 
is the index for the best candidate solution (determined on your side – not in the 
fitnessFun_DER: Please store  indexbest in otherParameters.idBestParticle. 

% store other information 
otherParameters.idBestParticle = indexbest; 
otherParameters.pfFinal = otherParameters.pfDB(:,indexbest); 
otherParameters.genCostsFinal = otherParameters.genCosts(indexbest,:); 
otherParameters.loadDRcostsFinal = otherParameters.loadDRcosts(indexbest,:); 
otherParameters.v2gChargeCostsFinal = otherParameters.v2gChargeCosts(indexbest,:); 
otherParameters.v2gDischargeCostsFinal =otherParameters.v2gDischargeCosts(indexbest,:); 
otherParameters.storageChargeCostsFinal = 
otherParameters.storageChargeCosts(indexbest,:); 
otherParameters.storageDischargeCostsFinal = 
otherParameters.storageDischargeCosts(indexbest,:); 
otherParameters.stBalanceFinal = otherParameters.stBalance(indexbest,:,:); 
otherParameters.v2gBalanceFinal = otherParameters.v2gBalance(indexbest,:,:); 
otherParameters.pensVoltageUFinal =  otherParameters.pensVoltageU(indexbest,:); 
otherParameters.pensVoltageLFinal = otherParameters.pensVoltageL(indexbest,:); 
otherParameters.pensMaxSLinesFinal = otherParameters.pensMaxSLines(indexbest,:); 
otherParameters.penSlackBusFinal = otherParameters.penSlackBus(indexbest,:); 

 

3.7. Benchmark results (text-files) 
                                                           
1 Voltages deviations allowed in the scenarios are 5% (∆V % ≤ 5%). Line flow cannot be higher than the 
maximum capacity (Max S - MVA rate). 
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The output is written to text-file using the writeBenchTables.m script. The following tables 
should be produced: 

Table 1. Table_Time: Computing time spent for all optimization trials (benchmark_Time.txt) 

 timeSpent (s) 
Run1  
Run2  
Run3  

…  
Run31  

 
Table 2. Table_Fit: Individual benchmark of the trials (benchmark_Fitness.txt) 

 Best 
Fit 

Avg 
Convergence 

Rate 

Penalties 
Balance 

Penalties 
Max S Lines 

Penalties 
Voltage 

(Lower bound) 

Penalties 
Voltage 
(Upper 
bound) 

Run1       
Run2       
Run3       

…       
Run31       
 

Table 3. Table_TrialStats: Summary statistics or the trials (benchmark_Summary.txt) 

 Best 
fitness Worse fitness Median Mode Standard 

deviation Variance 

       
       

 

A number 31 trials should be made. 

50,000 evaluations per trial should be made. 

Material to be submitted to the organizers: 

For each scenario, these 3 benchmark text files results should be submitted to the organizers. 
The implementation codes of each algorithm entering the competition must also be submitted 
along with final results for full consideration in the evaluation. The submitted codes will be 
used for further tests, which are intended to crosscheck the submitted results. The submitted 
codes will be in the public domain and no intellectual property claims should be made. 

Each participant is kindly requested to put the text files corresponding to final results, as well 
as the implementation files (codes), obtained by using a specific optimizer, into a zipped folder 
named  

output_data_case_implementation_name.zip  

(e.g. output_data_OSDER_PSOAlgorithm_Smith). 
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The zipped folder must be summited to joaps@isep.ipp.pt and j.l.ruedatorres@tudelft.nl 
by 30th March 2017 

  

mailto:joaps@isep.ipp.pt
mailto:j.l.ruedatorres@tudelft.nl
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