

Task Force on Modern Heuristic Optimization Test Beds

Working Group on Modern Heuristic Optimization
Intelligent Systems Subcommittee

Analytic Methods in Power Systems Committee

2017 Competition
Evaluating the Performance of Modern Heuristic
Optimizers on Smart Grid Operation Problems

Test bed 2:
Optimal scheduling of distributed energy resources

Zita Vale, João Soares

School of engineering (ISEP), Polytechnic of Porto, Porto, Portugal
zav@isep.ipp.pt, joaps@isep.ipp.pt

December 2016

mailto:zav@isep.ipp.pt
mailto:joaps@isep.ipp.pt

2

Table of contents

1. Introduction and general description ... 3

1.1. Objective function ... 3

1.2. Metaheuristic method framework .. 5

1.3. Fitness function ... 5

1.4. Some assumptions of the energy scheduling problem: .. 6

1.5. Some notes on the implementation of the problem: ... 6

2. Scenarios overview .. 7

2.1. 33-bus scenario ... 7

2.2. 180-bus scenario ... 7

3. Instructions for participants: ... 9

3.1. Master function /script ... 9

3.2. Loading the case study datasets ... 10

3.3. Set parameters of the metaheuristic .. 10

3.4. Set other necessary parameters and struct .. 11

3.5. Set bounds of variables ... 11

3.6. Fitness function (evaluation) ... 12

3.6.1. Direct repair of solutions: .. 12

3.6.2. Penalties for the last candidate solutions evaluated by the fitness function 14

3.7. Benchmark results (text-files) ... 14

Bibliography .. 17

3

Introduction and general description

GECAD – Polytechnic of Porto – proposes the optimization of two large-scale centralized Day-
Ahead energy resource scenarios. The aim is to use stochastic optimization (e.g. PSO, GA, SA,
ABC, etc.) to mitigate the exponential execution time using traditional mathematical tools.
Even with state-of-the-art solvers’ technology these scenarios use considerable amount of
time to solve. We wish to solve these scenarios fast, reliable and with satisfactory solutions.
The use of stochastic optimization may provide interesting answers and further discussion in
the community.

The energy aggregator can procure energy needs from several resources and the electricity
market and makes revenue from reselling energy to its customers. In addition, it may use its
own assets, e.g. storage units, to supply the load demand. The energy aggregator establishes
energy contracts with those who seek electricity supply, e.g. residential and industry
customers. It is designated here as a bilateral contract, i.e. between the aggregator and the
final end-user. In this case, it is assumed that the aggregator establishes a fixed price for fixed
loads and EVs charging. The fixed price is set independently for each consumer, based on
single-tariffs. The main idea is that the optimization software can perform the energy resource
scheduling of the involved resources in the day-ahead context for the 24 hours of the following
day. In addition, V2G is also possible.

Overview of the aggregator energy management problem

1.1. Objective function

The envisaged problem is a hard combinatorial Mixed-Integer Non-Linear Programming
(MINLP) problem due to high number of continuous, discrete and binary variables and network
non-linear equations. The objective of the aggregator is to maximize profits, i.e. income (In)
minus operation cost (OC). This can be rewritten as minimization function Z, as show in (1).

-Minimize Z OC In= (1)

The minimum value of Z (hopefully negative) is the profit of the energy aggregator. If Z is
negative it is expected to have a profit, otherwise OC are higher than Income. Thus, the profit
is P=-Z, where P is the profit. Nevertheless, for the goal in optimization terms is to obtain the
minimum value of Z in the metaheuristics form.

4

The aggregator can receive his income (In) from four sources, as illustrated in (2): the revenue
from the consumers demand; the energy to sell to the electricity market; the revenue from the
charging process of storage units and the charging of EVs.

(,) (,) () ()
1 1

1
(,) (,) (,) (,)

1 1

L M

VE

N N

Load L t Load L t Sell M,t Sell M,tT
L M

NN
t

Charge E t Charge E t Charge V t Charge V t
E V

In

P MP P MP
t

P MP P MP

= =

=

= =

=

  
⋅ + ⋅ +  

  ×∆
  

⋅ + ⋅  
   

∑ ∑
∑

∑ ∑
 (2)

The parameters are described by: NE is the number of ESSs; NL is the number of loads; NM is
the number of markets; NV is the number of EVs; MPLoad(L,t) is the price of load L in period t
(m.u.); MPSell(M,t) is the price that market M pays in period t (m.u.); MPCharge(E,t) is the price for
the charge process of ESS E in period t (m.u.); MPCharge(V,t) is the price for the charge process of
EV V in period t (m.u.)

The variables are described by: In is the aggregator income (m.u.); PCharge(E,t,) is the active
power charge of ESS E in period t (MW); PCharge(V,t) is the active power charge of EV V in period
t (MW); PLoad(L,t) is the active power demand of load L in period t (MW); PSell(M,t) is the active
power sale to market M in period t (MW)

Function OC, defined in (3), represents the operation cost of the resources managed by the
VPP. It considers the cost with Distributed Generation (DG), external suppliers, discharge of
storage and EVs, Demand Response (DR) programs, penalization with non-supplied demand
and penalization with DG units’ generation curtailment.

(,) (,) (,) (,)
1 1

(,) (,) () ()
1 1

(,) (,) (,) (,)
1 1

DG S

L M

V E

N N

DG I t DG I t Supplier S t Supplier S t
I S
N N

LoadDR L t LoadDR L t Buy M,t Buy M,t
L M
N N

Discharge V t Discharge V t Discharge E t Discharge E t
V E

OC

P c P c

P c P MP

P c P c

P

= =

= =

= =

=

⋅ + ⋅ +

⋅ + ⋅ +

⋅ + ⋅ +

∑ ∑

∑ ∑

∑ ∑1

(,) (,) (,) (,)
1 1

DGL

T

t

NN

NSD L t NSD L t GCP I t GCP I t
L I

c P c

=

= =

  
  
  
  
  
  
  
  
  
  
  ⋅ + ⋅    

∑

∑ ∑

 (3)

The indices are represented by: E is an index of ESSs; I is an index of DG units; L is an index of
loads; M is an index of market/energy buyer; S is an index of external suppliers; t is an index of
time periods; V is an index of EVs;

The parameters are described by: NDG is the number of DG units; NS is the number of external
electricity suppliers; CDG(I,t) is the generation price of DG unit I in period t (m.u.); CSupplier(S,t) is
the energy price of external supplier S in period t (m.u.); CLoadDR(L,t) is the load reduction (DR)
cost of load L in period t (m.u.); CDischarge(E,t) is the discharging cost of ESS E in period t (m.u.);
CDischarge(V,t) is the discharging cost of EV V in period t (m.u.); CNSD(L,t) is the non-supplied
demand (NSD) cost of load L in period t (m.u.); CGCP(I,t) is the curtailment cost of DG unit I in
period t (m.u.).

5

The variables are described by: OC is the total operation cost (m.u); PDG(I,t) is the active power
generation of DG unit I in period t (MW); PSupplier(S,t,) is the active power generation of the
external supplier S in period t (MW); PLoadDR(L,t) is the active power reduction of load L in period
t (MW); PNSD(L,t) is the active power of Non-supplied demand for load L in period t (MW);
PGCP(I,t) is the generation curtailment power of DG unit I in period t (MW);

The problem constraints are similar to [1]. The problem is mainly constrained by the network
equations, namely active and reactive powers balance, voltage and angle limits, DG generation
and supplier limits in each period, ESS capacity, charge and discharge rate limits, EVs capacity,
EVs’ trips requirements, charge and discharge efficiency and rate limits. A full AC power flow is
used to check the network conditions [2].

1.2. Metaheuristic method framework

In this competition, the method of choice used by the participants to solve the presented
problem must be a metaheuristic-based algorithm. The structure adopted in the competition is
described in this document and follows the structure presented below.

*the code should/cannot be changed

1.3. Fitness function

The fitness function f’ (4) considers the objective Z of the aggregator (see (1)), plus the
summation of the penalties found during evaluation of the solution. In this case gi is the value
of the i-th constraint (equality and inequality) and ρ is the configurable penalty factor (high
value). See section 3 for instructions regarding fitness function and how penalties work.

Encrypted programs*

Meta-heuristic code
(user-defined)

Meta-heuristic
parameters

(user-defined)

Encrypted programs
(common apps*)

Main program
(call meta-heuristic) callMH

callDatabase

MHparameters

MH code

fitnessFun_DER Radial network
power flow

6

[]
1

max 0,
n

i
i

f Z gρ
=

′ = + ∑ (4)

1.4. Some assumptions of the energy scheduling problem:

1) The aggregator maximizes its profits (income minus costs)
2) Electric vehicles can be controlled continuously (between 0 and max charge rate)
3) The same assumption applies to the V2G principle (between 0 and max discharge rate)
4) The stationary batteries or Energy Storage Systems (ESS) can be controlled

continuously similar to the EVs/V2G
5) The cost function of DG units is assumed to be linear
6) It is assumed that the energy aggregator can submit bids to the electricity market.
7) The market in which the aggregator participates can accept any bid amount
8) Only one market is considered in the scenarios
9) Forecast scenarios of EVs travels, wind/PV and other renewables are known in

advance (1 scenario)

1.5. Some notes on the implementation of the problem:
1) Internally in the fitness function, it is assumed that the charge/discharge variables for

the EVs are the same, but positive is charge value and negative is discharge to save
computational memory

2) The same principle describe above for EV applies for the stationary storage variables
3) The market in which the aggregator participates can accept any bid amount
4) Internally, the market value is positive for an offer (sale) and negative for a buy bid
5) Direct repair of solution is used in the fitness function (see section 3.6)

A maximum number of 50,000 evaluations is allowed in the competition. (Take into
account that it is not the same as algorithm iterations).

7

2. Scenarios overview
This section briefly describes the scenarios prepared for the competition.

2.1. 33-bus scenario

The first scenario considers a 12.66 kV 33-bus MV distribution network with 66 distributed
generation units (DG), 10 external suppliers, 1 large wind unit, 15 storage units, 1800 gridable
vehicles, 1 market and 32 loads with demand response (reduce).

 33 –bus MV distribution network

66 DGs

10 external Suppliers

1 large wind unit

15 storage units

1800 gridable EVs (V2G)

1 market

32 aggregated loads with demand response reduce program

The above scenario using traditional tools (GAMS/MINLP) takes about 19 hours to solve in a
state-of-the-art workstation (Intel(R) Xeon(R) CPU- E5-2620 v2 @ 2.10GHz with 16 GB RAM).
The total number of equations reported by the software is 280,729 with 234,541 continuous
and 88,380 binary variables.

EQUATIONS 280,729
SINGLE VARIABLES 234,541
DISCRETE VARIABLES 88,380

Total execution time: ~19 hours

2.2. 180-bus scenario

The second scenario considers a 180-bus 30 kV MV distribution network. With 116 DGs , 1
external suppliers, 7 storage units, 6000 EVs, 1 market and 90 loads with demand response.

 180-bus MV distribution network

116 DGs

1 external Suppliers

7 storage units

6000 gridable EVs (V2G)

1 market

 90 aggregated loads with demand response reduce program

8

The above scenario using traditional tools (GAMS/MINLP) takes more than 168 hours to solve
in a state-of-the-art workstation (Intel(R) Xeon(R) CPU- E5-2620 v2 @ 2.10GHz with 16 GB
RAM) The total number of equations reported by the software is 910,033 with 763,033
continuous and 290,568 binary variables.

EQUATIONS 910,033
SINGLE VARIABLES 763,033
DISCRETE VARIABLES 290,568

Total execution time: more than 168 hours (1 week)

9

3. Instructions for participants:

These instructions include as example the metaheuristic differential search algorithm [3]
implemented and adapted to the energy resource management (It has been modified by
GECAD).

It is important that the participants uses the following recommendations and structure to
avoid issues in using the supplied datasets and codes.

3.1. Master function /script

callDSA.m (this is the main file, the name should be similar for the participants, e.g. callMH.m
or masterScript.m)

The code arrangement is up to the competitor but of course it should follow a very similar
structure, like some functions that are mandatory to be used.

clear all
clc
tTotalTime=tic; % lets track total computational time

callDatabase % script to load the caseStudyData
noRuns = 3; % Number of trials here
% get DSA parameters from DSAparameters.m file
DSAparameters

otherParameters =
setOtherParameters(caseStudyData,dsaParameters.nParticles);
% set penalties
otherParameters.ensPenalty=10000; % insufficient generation / energy
not supplied
otherParameters.voltagePenalty=10000; % bus voltage violations
otherParameters.linesPenalty=10000; % rate capacity of lines violated

[lowerBounds,upperBounds] =
setVariablesBounds(caseStudyData,otherParameters);

for iRuns=1:noRuns
 tOpt=tic;
 rand('state',sum(noRuns*100*clock))% ensure stochastic indpt
trials
 [ResDB(iRuns).solution, ResDB(iRuns).fitMaxVector, ...
 ResDB(iRuns).objMaxVector, ResDB(iRuns).otherParameters] =...

DSA(dsaParameters,caseStudyData,otherParameters,lowerBounds,upperBound
s);
 ResDB(iRuns).tOpt=toc(tOpt); % time of each trial

 writeBenchTables % changed (20/02/2017)

end

tTotalTime=toc(tTotalTime)

10

Your metaheuristic code should return to the main script the following variables:

- solution: best candidate solution found (size: 1 x noVariables) vector

- fitMaxVector: the value of the fitness over the iterations (size: 1xnoIterations) vector

- objMaxVector: the actual value of the cost function without penalties (size: 2x noIterations)
vector

- otherParameters returned from the fitness function (check

If the participant wants to change the default assigned penalties regarding constraint
violations, please add these lines and change the value accordingly. A tweak is accepted in
the competition as some optimal penalties (i.e. penalties that adapt during the
optimizations) may be suggested by the participants. These penalties should be 1 or higher
or the fitness function will not accept it. If you don’t want to change the default penalties
just remove those lines from the master. Default penalties are 10,000 per each violation
found.

otherParameters.ensPenalty=10000; % insufficient generation / energy
not supplied
otherParameters.voltagePenalty=10000; % bus voltage violations
otherParameters.linesPenalty=10000; % rate capacity of lines violated

3.2. Loading the case study datasets

#callDatabase script – important to load the caseStudyData struct with all the relevant dataset
from the case study scenario. Participants don’t need to worry about the content of the case
study and loading the files. It is already done. Just need to select in this file the scenario to test
(33-bus) or (180-bus). The actual loading file for each case is encrypted. The data set variable is
caseStudyData.

% available scenarios
% 33 for 33-bus network with 1800 EVs
% 180 for 180-bus network with 6000 EVs

scenario = 180; % choose 33 or 180

switch scenario
 case 33
 callDatabase_33bus % encrypted file
 case 180
 callDatabase_180bus % encrypted file
end

3.3. Set parameters of the metaheuristic

DSAparameters.m file – file specific to the metaheuristic implemented by the participant

dsaParameters.nParticles= 10; % population DSA, size_of_superorganism
dsaParameters.maxIterations = 2000; % number of max iterations/epochs
dsaParameters.method = 4; % 4: Elitist DSA (strategy 2) (E2-DSA)
dsaParameters.fnc='fitnessFun_DER';
dsaParameters.p1_multiplier=0.3;
dsaParameters.p2_multiplier=0.3;
dsaParameters.scale_factor=1./gamrnd(1,0.5); % pseudo-stable walk

11

dsaParameters.noIterationsToGap=400; % iterations to wait for improve
dsaParameters.minIterations = 500; % number of min iterations/epochs
dsaParameters.threshold = 1e-9; % threshold for fitness improvement
NOTE: 50,000 evaluations per trial should be made.

3.4. Set other necessary parameters and struct

setOtherParameters.m (encrypted) – this file should not be changed and it is encrypted, it
just sets parameters and data needed for the fitness function to work. It is a mandatory
function and should be run as illustrated in main function section.

Participants have to pass the otherParameters struct to the fitnessFunction provided

3.5. Set bounds of variables

setVariablesBounds.m (encrypted) – this file should not be changed and it is encrypted, it
just sets the bounds of the problem variables.

The outputs of this function [lowerBounds,upperBounds] – should be used by your MH to
generate the initial solution and validate if the bounds are being respected in each iteration.
You need to use lower/upper bounds vector to generate the in

The order of the variables in the implemented codes are case-study dependent. However, they
should have this order to respect the fitness function and given bounds:

Variables name Length
Generator active power (1) Number of DG generators and external suppliers
Generator reactive powers (2) Number of DG generators and external suppliers
Generator binaries (3) Number of DG generators and external suppliers
EVs charge/discharge (4) Number of electric vehicles
Demand response for each load (5) Number of loads
Storage charge/discharge (6) Number of ESS units
Market (7) Number of markets (one)
Substation transformer tap (8) One

These variables are repeated for each period in the solutions matrix (individual x periods):

 Period 1 … Period T
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
... 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
N 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

The following parameters are used to identifty the ids of each type of variables. These ids are
used to locate the type of variables in solutions matrix (ids correspond to the columns while
individuals to the rows). One individual is possible but not very common.

otherParameters.ids.idsGen
otherParameters.ids.idsQGen
otherParameters.ids.idsXGen
otherParameters.ids.idsV2G
otherParameters.ids.idsLoadDR
otherParameters.ids.idsStorage
otherParameters.ids.idsMarket

12

otherParameters.ids.idsTAP

Example of use:

periods = caseStudyData.parameterData.numPeriods;
nParticles = size(solutions,1);
nVariables = size(solutions,2);
idsV2G= otherParameters.ids.idsV2G;
getPeriod = 2;
tempIds=idsV2G+(nVariables/periods)*(getPeriod-1);
solutions(:,tempIds) % EVs variables for period 2, all individuals
solutions(2,tempIds) % EVs variables for period 2, second individual

3.6. Fitness function (evaluation)

fitnessFun_DER.m (encrypted) – this is the evaluation function to be used by participants.
Participants must use this function to evaluate the solutions of the metaheuristic.

The fitnessFun_DER evaluates all the population at once, i.e. solutions matrix is a NxD
dimesion matrix, in which N (rows) represents the number of individuals and D (columns)
represent the number of variables of the optimization problem.

function [solFitness, solObjFun, solutions, otherParameters] =
fitnessFun_DER(solutions,caseStudyData,otherParameters)
%%
%%%%
% Energy Resources Management fitness function
% This function evaluates meta-heuristics solutions
% The objective function is: maximize the profits of DER management.
% "solutions" contains all the variables of the optimization problem
% "solutions" is a NxD dimension matrix in which N represents the
% number of particles (i.e. in the case of PSO) and D represents the
% number of variables of the optimization problem (dimension of the
% particle).
% "caseStudyData" contains the data of the scenario
% "otherParameters" contains auxiliary data such as ids for the sol
vector
% V4.0
% 25-11-2016 (last update)
% GECAD, ISEP, Polytechnic of Porto, 2016
%%%

Note: Please refer to section 3.6.2 regarding the magnitude of each constraint violation.

3.6.1. Direct repair of solutions:

The fitnessFun_DER as some mechanisms to provide a fast convergence of the solutions,
namely direct repair of solutions. This means that the solutions returned by the function are
changed if some constraints are not satisfied. Some notes are explained:

- Charge/discharge rates of EVs/ESS are adjusted taken into account the energy
remaining the battery and the maximum capacity of the batteries (no need for
penalties, as the correction are guaranteed)

13

- The demand/generation balance is made using a merit sort process
- A power flow is run and the total system losses are compensated by generators
- If the balance is not possible a penalty is thrown.

Inputs:

Solutions is a matrix with the variables of the problem (columns). Individuals are by rows. This
variable comes from the MH population. Only 1 individual is also possible (one row).

caseStudyData: as loaded by callDatabase function (see section 3.2)

otherParameters: as loaded by setOtherParameters function (see subsection 3.3)

Outputs:

solFitness provides a row-vector with a fitness value for each candidate solution.

solFitness output for 10 candidate solutions evaluated with the fitnessFun_DER.m

solObjFun provides a matrix with the actual objective function (without penalties) for each
candidate solution

solObjFun output for 10 candidate solutions evaluated with the fitnessFun_DER.m

14

Note: As direct repair is being used in fitness function as outlined before, the repaired solutions
vector is also returned (third). The participants must update their population in the MH side.

Finally, otherParameters struct is used to return some valuable information captured during
the evaluation phase in fitnessFun_DER.

Example output of otherParameters struct returned with the fitnessFun_DER.m

3.6.2. Penalties1 for the last candidate solutions evaluated by the fitness function
• otherParameters.pensVoltageU: penalties regarding overvoltage (by solution and

period)
• otherParameters.pensVoltageL: penalties regarding undervoltage (by solution in each

period)
• otherParameters.pensMaxSlines: penalties regarding thermal capacity violation in

lines (by solution and period)
• otherParameters.penSlackBus: if generation is not enough, i.e. there is energy not

supplied, a penalty is assigned (by candidate solution and period)

In the MH function, please add some code like the one provided below after determining the
best candidate solution, i.e. after evaluating the solutions. In the sample code below indexbest
is the index for the best candidate solution (determined on your side – not in the
fitnessFun_DER: Please store indexbest in otherParameters.idBestParticle.

% store other information
otherParameters.idBestParticle = indexbest;
otherParameters.pfFinal = otherParameters.pfDB(:,indexbest);
otherParameters.genCostsFinal = otherParameters.genCosts(indexbest,:);
otherParameters.loadDRcostsFinal = otherParameters.loadDRcosts(indexbest,:);
otherParameters.v2gChargeCostsFinal = otherParameters.v2gChargeCosts(indexbest,:);
otherParameters.v2gDischargeCostsFinal =otherParameters.v2gDischargeCosts(indexbest,:);
otherParameters.storageChargeCostsFinal =
otherParameters.storageChargeCosts(indexbest,:);
otherParameters.storageDischargeCostsFinal =
otherParameters.storageDischargeCosts(indexbest,:);
otherParameters.stBalanceFinal = otherParameters.stBalance(indexbest,:,:);
otherParameters.v2gBalanceFinal = otherParameters.v2gBalance(indexbest,:,:);
otherParameters.pensVoltageUFinal = otherParameters.pensVoltageU(indexbest,:);
otherParameters.pensVoltageLFinal = otherParameters.pensVoltageL(indexbest,:);
otherParameters.pensMaxSLinesFinal = otherParameters.pensMaxSLines(indexbest,:);
otherParameters.penSlackBusFinal = otherParameters.penSlackBus(indexbest,:);

3.7. Benchmark results (text-files)

1 Voltages deviations allowed in the scenarios are 5% (∆V % ≤ 5%). Line flow cannot be higher than the
maximum capacity (Max S - MVA rate).

15

The output is written to text-file using the writeBenchTables.m script. The following tables
should be produced:

Table 1. Table_Time: Computing time spent for all optimization trials (benchmark_Time.txt)

 timeSpent (s)
Run1
Run2
Run3

…
Run31

Table 2. Table_Fit: Individual benchmark of the trials (benchmark_Fitness.txt)

 Best
Fit

Avg
Convergence

Rate

Penalties
Balance

Penalties
Max S Lines

Penalties
Voltage

(Lower bound)

Penalties
Voltage
(Upper
bound)

Run1
Run2
Run3

…
Run31

Table 3. Table_TrialStats: Summary statistics or the trials (benchmark_Summary.txt)

 Best
fitness Worse fitness Median Mode Standard

deviation Variance

A number 31 trials should be made.

50,000 evaluations per trial should be made.

Material to be submitted to the organizers:

For each scenario, these 3 benchmark text files results should be submitted to the organizers.
The implementation codes of each algorithm entering the competition must also be submitted
along with final results for full consideration in the evaluation. The submitted codes will be
used for further tests, which are intended to crosscheck the submitted results. The submitted
codes will be in the public domain and no intellectual property claims should be made.

Each participant is kindly requested to put the text files corresponding to final results, as well
as the implementation files (codes), obtained by using a specific optimizer, into a zipped folder
named

output_data_case_implementation_name.zip

(e.g. output_data_OSDER_PSOAlgorithm_Smith).

16

The zipped folder must be summited to joaps@isep.ipp.pt and j.l.ruedatorres@tudelft.nl
by 30th March 2017

mailto:joaps@isep.ipp.pt
mailto:j.l.ruedatorres@tudelft.nl

17

Bibliography
[1] J. Soares, C. Lobo, M. Silva, H. Morais, and Z. Vale, “Relaxation of non-convex problem

as an initial solution of meta-heuristics for energy resource management,” in 2015 IEEE
Power & Energy Society General Meeting, 2015, pp. 1–5.

[2] D. Thukaram, H. M. Wijekoon Banda, and J. Jerome, “A robust three phase power flow
algorithm for radial distribution systems,” Electr. Power Syst. Res., vol. 50, no. 3, pp.
227–236, 1999.

[3] P. Civicioglu, “Transforming geocentric cartesian coordinates to geodetic coordinates by
using differential search algorithm,” Comput. Geosci., vol. 46, pp. 229–247, 2012.

	1.1. Objective function
	1.2. Metaheuristic method framework
	1.3. Fitness function
	1.4. Some assumptions of the energy scheduling problem:
	1.5. Some notes on the implementation of the problem:
	2. Scenarios overview
	2.1. 33-bus scenario
	2.2. 180-bus scenario

	3. Instructions for participants:
	3.1. Master function /script
	3.2. Loading the case study datasets
	3.3. Set parameters of the metaheuristic
	3.4. Set other necessary parameters and struct
	3.5. Set bounds of variables
	3.6. Fitness function (evaluation)
	3.6.1. Direct repair of solutions:
	3.6.2. PenaltiesP0F P for the last candidate solutions evaluated by the fitness function

	3.7. Benchmark results (text-files)

	Bibliography

