Program update
February, 2017

Unlimited Rights to NASA in accordance with Prime Contract NNJ06TA25C and Subcontract RH6-118203.

Export Administration Regulations (EAR) Notice

• WARNING – This information is subject to the export control laws of the United States, specifically the Export Administration Act and the Export Administration Regulations (EAR), 15 C.F.R. parts 730-774, diversion contrary to U.S. law is prohibited. The export, re-export, transfer or re-transfer of this technical data/technology to any other company, entity, person, or destination, or for any use or purpose other than that for which the technical data was originally provided is prohibited without prior written approval and authorization under applicable export control laws.
585 Days
To LAUNCH
NASA SPACE LAUNCH VEHICLE

- Environmental Control & Life Support – SE&I
- Power Management & Distribution
- Active Thermal Control
- Space Launch System

- Orion

- Power and Data Unit (modules)
- Avionics Cooling
- Active Thermal Control
- Power Transient Protection Unit

- Power and Data Unit (modules)
- Auxiliary Bus Control Unit
- Cabin Air Ventilation
- Fire Detection & Suppression
- CO2 Removal / Humidity Control
- Pressure Control System
- Atmospheric Monitoring System
- Solid Rocket Booster
- TVC Power Units
- Main Engine Thrust Vector Control (TVC)

- Solid Rocket Booster
- TVC Power Units

Export Controlled Information: EAR99

UTC Aerospace Systems
The Orion Multi-Purpose Crew Vehicle (MPCV) is NASA’s first spacecraft designed for long-duration, human-rated deep space exploration. It consists of two main modules:

- **Crew Module (CM)** - Lockheed Martin
- **Service Module (SM)** – European Space Agency
 - SM supports the crew module from launch through separation prior to reentry

SM is propelled by eight R-4D Auxiliary Engine thrusters
- 110-pound-thrust bipropellant thrusters

CM is propelled by 12 MR-104G catalytic thrusters
- **Thrust generated by catalytic decomposition of hydrazine over a heated metallic catalyst bed**

First test flight - Exploration Flight Test 1 (EFT-1)
- Launched on December 5, 2014 by a Delta IV Heavy rocket

Future missions:
- Exploration Mission – 1 (EM-1) Uncrewed, launched by Space Launch System
- EM-2 Crewed mission, launched by Space Launch System

Export Controlled Information: EAR99
UTC Aerospace Systems

Space Launch System (SLS) and Orion

- SLS Rockford Content
 - 45 IL Employees

- Orion Rockford Content
 - 44 IL Employees

New Technologies backed by 40 years of Proven Human Space and Rocketry Performance

Export Controlled Information: EAR99
The First SLS/Orion Mission - 2018

EXPLORATION MISSION-1
UNCREWED DISTANT RETROGRADE ORBIT
Orion Program

- Orion Multi-Purpose Crew Vehicle (MPCV) is a cross site systems level program, with responsibilities spread across several UTAS Space Systems sites
- Rockford plant site is responsible for Power Management and Distribution (PMAD) system

UTAS Content for Orion Capsule

EFT-1 Content

Export Controlled Information: EAR99
Orion Power Management And Distribution (PMAD)

- Umbilical Switch Card (USC)
- ECLSS Drive Electronics Card (EDE)
- Load Switch Card (LSC)
- 28V Converter Card (28VCC)
- Auxiliary Bus Control Unit (ABCU)
- Portable Utility Panel (PUP)
- Power Transient Protection Unit for LAS and Service Module (LAS PTPU, SM PTPU)
- Power and Data Unit (PDU) Assemblies

Export Controlled Information: EAR99
ITL ABCU

Export Controlled Information: EAR99
UTAS PDU Card Content

- PDUs
 - USC
 - S1
 - C1
 - C3
 - C5
 - LSC

- Cards per String
 - 4 USCs
 - 4 LSCs
 - 6 EDE/28V

Export Controlled Information: EAR99
Orion Electric Power System

Solar Arrays

PCDU

SM PTPU

PCDU

Solar Arrays

• Service
• Module

C1

C2

C3

C4

C5

C6

Battery

Battery

ABCU

LAS PTPU

• Crew
• Module

• ESA supplied
• LM/UTAS
• UTAS
• LM

Export Controlled Information: EAR99
EPS and PMAD

• Aircraft EPS traditional
 – Typical 2 Channel, AC generator sources, 28VDC derived from TRUs and batteries
 – Centralized Switches, Relay/Contactor Drives, contact breaker panels in cockpit (accessible by pilot/flight engineer)

• Aircraft PMAD evolution
 – Distributed SPDAs – remote contact breakers with electronic solid state breakers/switches
 – Remote control from flight deck over digital communications (Arinc 429, Ethernet based etc....)
Space Craft (Human) EPS/PMAD

- **Apollo**
 - 28VDC Fuel Cells(3) SM and Batteries CM (~3-5kW fuel limited)
 - Contact Breaker panels crew accessible

- **Space Shuttle Orbiter**
 - 28Vdc Fuel cells(3) and Batteries (~10 – 12 kW fuel limited)
 - Remote solid state comms bus (1553?), and pilot accessible contact breakers

- **International Space Station**
 - 120Vdc, Solar Array and Batteries (~85kW+ Array/Battery limit)
 - Well regulated power to EPCE/Users
 - Remote electronic power contactors, computer controlled via Mil Std 1553
Operation/Profile

- **Mission energy Profile.**
 - Important to be able to guarantee that the system has capacity to meet the full mission needs from launch to recovery.
 - Detailed planning needed to size the “array and batteries” to meet needs for all orbital cases, deterioration of components, and faults.
 - Or carry enough Fuel in the case of Fuel Cell technology.
 - Enough battery power for reentry and recovery.

- **Power Quality**
 - Voltage drop, trip characteristics, losses, EPCE (Electrical Power Consumer Equipment) details…
Orion EPS and PMAD

- Space vehicle similar to the Apollo
- 120Vdc Dual Bus, Solar Array and Batteries (Li-ion)
 - Arrays located in Service Module, Batteries in the Crew Module
 - Battery Regulated! (low losses but large voltage range)
 - Remote electronic power control, computer controlled via “Ethernet” (T-Tech 1G similar to 787 EPS internal)
- Power Distribution achieved by PDU (Power Data Units)
 - PDUs accommodate some utilities, network switching and power control/conversion
 - UTAS provides highly integrated “switching elements” as RPCs
 - RPCs are able to “current limit” prior to trip during fault conditions. This helps maintain the integrity of the rest of the power system upstream from the fault.
Orion – how it’s arranged

- **PDU Power Data Units**
 - 2 in SM, 2 external CM, 2 internal CM
- **Batteries (2)** feed C1 and C2 and ABCU
- **120Vdc distributed, some 28Vdc**

- **LAS PTPU**
 - Power feed to Launch Abort System (basically a big wocket)
 - Located in SM to protect incoming external power

- **Transient protection lightning during launch and ascent**

- **PCDU**
 - Interface between European SM EPS to Orion EPS

Export Controlled Information: EAR99

UTC Aerospace Systems
Why Remote Power Contactors

- Current Limiting
 - Mitigates/limits upstream disturbances
 - Voltage across device proportional to fault current
 - Mimics i2t inverse characteristic
 - More complex, stressful for limiting device (SOA)
UTAS is developing six components for each of the four thrust vector control systems (RS-25 Main Engines gimbaling) on Boeing’s Space Launch System Core Stage.

Shuttle Orbiter hydrazine APUs are being converted to cold-gas blow-down units (CAPU) with new technology controllers.

Customer: Boeing
Status: Starting Design, Development, Test & Evaluation

Export Controlled Information: EAR99
RS-25 Engine

Thrust Vector Control Actuator
Two on each RS-25 engine

SLS 70-metric-ton Initial Configuration

- 3500 psia gaseous hydrogen that powers the CAPU is tapped from the LH2 turbo pump

Export Controlled Information: EAR99
Space launch system (SLS)

UTAS supplied (Heritage Shuttle basis)

export Controlled Information: EAR99
What it Takes to Go Beyond Low Earth Orbit

- **220 MILES**
 - 45 MINUTES TO EARTH

- **240,000 MILES**
 - 5 DAYS TO EARTH

- **34 MILLION MILES**
 - >180 DAYS TO EARTH
Why an Incremental Approach Makes Sense

Phase 0
Demonstrate technologies and conduct research to support exploration
- Deep Space Technologies
- Human Health

Phase 1
Demonstrate Critical Systems near the Moon [Early 2020’s]
- Orion
- Space Launch System
- Exploration Habitat
- Solar Electric Propulsion

Phase 2
Validate Mars-Class Systems and Operational Readiness [Late 2020’s]
- Lunar Science
- Lunar Landing – International
- Simulated Mars mission

Phase 3+
Journey to the Mars System [2030+]

Earth Reliant
Missions: 6-12 months
Return: Hours
~250 miles

Proving Ground
Missions: 1-12 months
Return: Days
~240,000 miles

Earth Independent
Missions: 2-3 years
Return: Months
~140 million miles

Export Controlled Information: EAR99
Evolvable Rocket

322 ft.
Launch Abort System
Interim Cryogenic Propulsion Stage
Launch Vehicle Stage Adapter

364 ft.
Universal Stage Adapter
Core Stage
Solid Rocket Boosters

327 ft.
Cargo Fairing
Exploration Upper Stage
Interstage
Solid Rocket Boosters

365 ft.
Cargo Fairing
Exploration Upper Stage
Interstage
Core Stage
Advanced Boosters
RS-25 Engines

SLS Block 1
70t
SLS Block 1B Crew
105t
SLS Block 1B Cargo
105t
SLS Block 2 Cargo
130t

Export Controlled Information: EAR99
6 Essential Capabilities for the Journey to Mars

Orion
- Full scale development underway
- Successful uncrewed flight test Dec 2014
- Second flight in 2018 - 1st human-rated spacecraft flight to moon since 1972
- Human lunar flight in 2021

Habitat
- ECLSS systems testing underway on ISS
- Habitat & subsystem studies underway
- Advanced hab testing during in late 2020s

Mars Ascent Vehicle (MAV)
- Component level testing with LOX/Methane
- Lunar Lander in mid 2020s
- Mars precursor mission in late 2020s
- Mars MAV ready in early 2030s

Space Launch System
- Full Scale Development Underway
- Critical Design Review completed
- 2018 first flight hardware in production
- Exploration Upper Stage in 2021 increasing SLS capability

Power
- Next generation array testing underway at ISS
- Initial 50 kW demonstration - Asteroid Redirect Mission
- 150 kW - Translunar SEP tug

Mars Lander & Surface Systems
- Capability testing with lunar landers and habs
- Precursor EDL testing with robotic missions
With design and development work mostly complete, the SLS Program is now building and testing components of the world's most powerful rocket to be ready for launch in 2018. Each of these steps advance NASA on the Journey to Mars.
Summary

- Rockford has Legacy with NASA Space programs
- Power Distribution in Space has challenges
- Rockford has a significant role in the future of NASA space programs

We ARE building America’s Next Space Ship

Export Controlled Information: EAR99
585 Days To LAUNCH