TARANA WIRELESS, INC.

FOR PUBLIC USE

High Spectral Efficiency Designs and Applications

Eric Rebeiz, Ph.D.
Director of Wireless Technology
Opportunity: Un(der)served Broadband

Consumer

3.4B Households Worldwide
Broadband Service Penetration:

- 4% ≥15Mbps (4K ready)
- 20% <15Mbps
- 76% No service

75M U.S.
600M Rest of World

Tarana’s initial addressable markets:

- 2.6B unserved
- 675M underserved consumer HHs
- 115M un(der)served businesses

IoT and Mobile applications come next

Business

150M Commercial Properties Worldwide
Business Broadband over Fiber Penetration:

- 23% Fiber fed
- 77% Copper, coax, or no service

115M underserved businesses
Problem: Current options not addressing demand

- Fiber — High Costs
 - Prohibitive costs
 - Slow deployment
 - Viable only for very short distances

- Wireless — Poor Performance
 - Obstructions
 - Spectrum Scarcity
 - Interference
 - Motion
 - Complex Installation

Viable only for very short distances
Last-mile wireless: why easier said than done

Reality: Most links have **no** clear line of sight to nearest fiber location (hence, harder to do)

Sources: Tarana’s tier 1 mobile & fixed operator customers

Last-Mile Link Mix

- **Line of sight (LoS)**
- **Non line of sight (NLoS)**

80 - 90%
NLoS has several implications

1. Very limited spectrum

- Physics work, but oversubscribed for mobile access
- 3.5GHz (CBRS)
- 5GHz unlicensed, very crowded

2. Multipath

3. Co-Channel Interference

4. Wi-Fi Interference

5. Changing Conditions
Solving NLoS challenges

Challenge

- Multipath Fading

Solution

- Multipath combining

- Tarana Signal Strength
 - Better 1000x than Others

Challenge

- Changing Conditions Installation Challenges

Solution

- Continuous, Autonomous Adaptation
 - 5000 times / sec

Unprecedented performance example: Flawless backhaul of LTE cell-on-boat
Solving interference challenges

Challenge

Co-Channel Interference for licensed bands

Wi-Fi Interference for unlicensed bands

Solution

Perfect Co-Channel Isolation

Precise digital beam- and nullforming

Unlicensed Interference Cancellation

Tarana: Rapid nulling, free channel

Others: Futile channel changes
Putting it all together: Tarana Platform

Revolutionizing Wireless Performance

10x

- **NLoS Range**
- **Spectral Efficiency**
- **Interference Immunity**
- **Cell-edge Performance**
- **Stability with Motion**

<table>
<thead>
<tr>
<th>Tarana</th>
<th>Prior State of the Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x</td>
<td></td>
</tr>
<tr>
<td>NLoS Range</td>
<td>10x</td>
</tr>
<tr>
<td>Spectral Efficiency</td>
<td>100x fewer cells</td>
</tr>
<tr>
<td>Interference Immunity</td>
<td>100%</td>
</tr>
<tr>
<td>Cell-edge Performance</td>
<td>10x less spectrum</td>
</tr>
<tr>
<td>Stability with Motion</td>
<td>10x free spectrum</td>
</tr>
</tbody>
</table>

- Gigabit Fixed Wireless Cells Required per km²
- 1 km
- Spectral Efficiency (sub 6 GHz)
- NLoS bps/Hz/site >10x
- 5 GHz Link Rate with Wi-Fi Interferers
- 100%
- Service Uniformity
- bps/Hz/link
- Fiber-class capacity everywhere
- Link Rate with Moving Obstructions and Reflections
- % of samples over time
- Fiber-class reliability

100x fewer cells
Site flexibility
Fast deployment
Gigabit Residential Broadband Economics

AbsoluteAir 3 Deployment for Typical Neighborhood

Capex $ / HH served

Fiber
Tarana

Share of HH passed

0% 20% 40% 60% 80%

Capex $ / HH served

0 2,500 5,000 7,500 10,000 12,500

Residential Node

3-sector Base Node

trunk to remote node
<table>
<thead>
<tr>
<th>Attribute</th>
<th>AbsoluteAir</th>
<th>4G LTE</th>
<th>Other 5G-NR Massive MIMO</th>
<th>5G mm-wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use-Case Focus</td>
<td>Fixed access</td>
<td>Mobile</td>
<td>Mobile</td>
<td>Fixed</td>
</tr>
<tr>
<td>Max Link Speeds</td>
<td>1,600 Mbps</td>
<td>~150 Mbps</td>
<td>> 1,000 Mbps</td>
<td>Gbps</td>
</tr>
<tr>
<td>Edge Link Speed</td>
<td>800 Mbps</td>
<td>< 10 Mbps</td>
<td>< 20 Mbps</td>
<td></td>
</tr>
<tr>
<td>Uniform Service throughout Cell</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>At very short range</td>
</tr>
<tr>
<td>NLoS Range</td>
<td>2-5 km (Gbit)</td>
<td>Few km at low rate</td>
<td>Few km at low rate</td>
<td>100-300m LOS only</td>
</tr>
<tr>
<td>Spectral Efficiency in sub-10 GHz</td>
<td>~70 bps/Hz/site</td>
<td>4-6 bps/Hz/site</td>
<td>~10 to 15 bps/Hz/site</td>
<td>n/a</td>
</tr>
<tr>
<td>spectrum Dense Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>2018 - 2019</td>
<td>Now</td>
<td>2020+</td>
<td>2020+</td>
</tr>
</tbody>
</table>
Tarana Proprietary Technology Overview

<table>
<thead>
<tr>
<th>Unique Architecture Elements</th>
<th>Performance Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed massive MIMO (DMM)</td>
<td>Large numbers of radios increase precision of all algorithms; even balance between base and remote nodes makes complex techniques feasible</td>
</tr>
<tr>
<td>Precise digital beam- and null-forming on both Tx and Rx</td>
<td>The foundation of all that follows: extremely well-controlled distribution and reception of radio energy only where productive</td>
</tr>
<tr>
<td>Closed-loop beamforming adaptation</td>
<td>Collaboration between base and remote nodes further improves digital beamforming accuracy</td>
</tr>
<tr>
<td>3D equalization</td>
<td>Applying signal processing across time, frequency, and spatial domains yields perfect channel even with the most complex diffraction, reflection, and motion effects</td>
</tr>
<tr>
<td>Autonomous, adaptive co-channel interference cancellation</td>
<td>Huge spectral efficiency gains through dense co-channel link operation</td>
</tr>
<tr>
<td>Spatial Multiplexing</td>
<td>Spectrum multiplier (24 streams, per base station site)</td>
</tr>
<tr>
<td>Continuous unlicensed interference cancellation</td>
<td>Yields licensed-class reliability in unlicensed spectrum</td>
</tr>
</tbody>
</table>
Field Validation
NLoS Performance

With Tier-1 US carrier

33 Severe NLoS 3.65 GHz links in Manhattan
Nearly all at maximum modulation (256 QAM)
CN at 186 m AGL, single EN mounted on SUV at roof level (locations tested separately)
Links closed autonomously by the time the SUV was parked in each location, without physical re-alignment

% of full rate

<table>
<thead>
<tr>
<th>% of full rate</th>
<th>100</th>
<th>75</th>
<th>50</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
<td>2500</td>
</tr>
</tbody>
</table>
Long-Distance nLoS

- Application: remote-site connectivity in oil and gas operations in a 20 MHz channel
- Requirements for rapid, low-skilled deployment and high reliability in challenging terrain
- Tests conducted independently by tier 1 global oil producer in Texas field

Example Link:

- 40 Mbps, 54.8km
- 80 Mbps, 41.7km
- 67 Mbps, 34.5km
- 137 Mbps, 15.5km
- 87 Mbps, 11.2km
- CN on 105m Tower

- 40 Mbps (DL+UL), 57.5km
- 40 Mbps, 50.2km
- 86 Mbps, 46.5km
- 85 Mbps, 45.1km
- 143 Mbps, 12.5km

Single PtP CN
Single EN at 2.5m AGL (used in multiple test locations)
Unlicensed link deployment with interference cancellation

- 5.8 GHz 20 MHz link achieving with spectral efficiency of 10 bps/Hz
- End node co-located with Wi-Fi 802.11ac access point and multiple clients on the same UNII-3 channel
Hong Kong Trials (with leading Telco Operator)

NLoS
8 fully-obstructed links tested in challenging, dynamic HK environment, with remotes at street level, from 200 to 1,200 m. All closed within 5 minutes of setup, all at high speeds.

PtMP
Two 20 MHz co-channel links operated from one CN, in high-density rooftop-to-rooftop setting. Aggregate capacity was very stable and equaled 2x individual link capacity, as expected.

Interference
Strong nearby 5 GHz interferer pointed at CN in PtMP configuration. Capacity fluctuated down to 50 Mbps, but returned to maximum rate and full stability with proprietary interference cancellation techniques.

Over Water
Tested 3G, 4G, and JDSU traffic over multiple days through 11.6 km link over water (from Victoria to Caritas) — maintained reliable 340 Mbps link (in 40 MHz), weathering tides and monsoon rains.
A wide variety of network applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Economy</th>
<th>Operator Share</th>
<th>User Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential broadband + IoT backhaul</td>
<td>Unique ability to support fixed and mobile wireless applications with the same infrastructure</td>
<td>Both developed- and developing-world ARPU</td>
<td>Low to high</td>
</tr>
<tr>
<td>Smart cities w/ high bandwidth demand</td>
<td>Broad utility of spectrally-efficient, easy-to-deploy, high-capacity links immune to interference, obstructions, and motion</td>
<td>Access to single homes in developed worlds</td>
<td>Rural to dense urban</td>
</tr>
<tr>
<td>Vehicular connectivity</td>
<td>Access to multitenant buildings in developing world, with aggregate ARPU comparable to single developed-world homes</td>
<td>Low to high</td>
<td></td>
</tr>
<tr>
<td>Special-purpose networks (marine, security, industrial)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise connectivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Backhaul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile broadband (next)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Given unique range and capacity extensions, network economics are very good in either sparse or dense deployments.
Leading a wireless broadband revolution

Let's make it happen together!

Contact: eric@taranawireless.com