New Converter Topologies for High-Voltage Dc Converters

Prof. Ani Gole
University of Manitoba, Canada
Outline

- Brief History of HVDC Transmission
- Conventional HVDC and its Problems
- Capacitor Commutated Type Converters
- Voltage Sourced Converter Based HVDC
 - PWM Based
 - Multi-level Modular
Originally HVDC was used for Distribution (Edison’s Dc Dynamo) (pre 1900)

Disadvantages: Complicated machinery (dc commutator), lack of voltage transformability

Ac overcame these disadvantages

However:
Long distance DC transmission is not adversely affected by Transmission Line or Cable inductance/capacitance
• Why not generate and consume ac but transmit dc?
• Thury (early 1900’s) in France: ~100 km Dc transmission
 – Disadvantage: Ac/Dc Converter – motor generator set
• Use of Power Electronic Devices (Mercury-Arc Valves) made for more efficient Ac/Dc Conversion
• First Scheme Based on Modern day concepts:
 – Gotland (Sweden Mainland-Island) 1954,. Used Grid Control Mercury Arc Rectifiers. Manufacturer ASEA 100 kV (Monopolar), 20 MW under-sea transmission spanning 96 km.

• First Canadian Scheme:
 – Vancouver - Vancouver Island, 1968, +/-130 kV , 312 MW, 41 km overheadline, 32 km underwater cable.

• Last Mercury Arc Scheme:
 – Nelson River Bipole 1 in Manitoba (1800 MW, +/-450 kV)
HVDC: Brief History…

• First Canadian Scheme:
 – Vancouver - Vancouver Island, 1968, +/-130 kV, 312 MW, 41 km overheadline, 32 km underwater cable

• First Use of Solid-State Thyristors:
 – Eel River (New Brunswick-Quebec, Canada) :1972, +/-80 kV, 350MW. Back to back connection between two utilities.

• Large HVDC Systems:
 – Itaipu (Brazil, Generation: Paraguay/Brazil) +/- 600 kV, 6000 MW, over850 km. Main reason for Dc: Paraguay is 50 Hz, Brazil is 60 Hz.
 – Volvograd Dunbas: USSR, 6000 MW?
 – Three Gorges, China (10,000 MW), +/- 600 kV
Manitoba:

– Nelson River Bipole-III (Henday-Riel)
– 1400 km? 2200 MW +/- 500 kV
Manitoba Hydro’s Nelson River HVDC Transmission System: 4 GW over 950 km (approx. 70% of total Manitoba installed generation)

Approx. 40% of MH revenues come from exports

Manitoba Dams are a reservoir that permits power cycling

Revenue generated includes power cycling (day/night)
Many technology revisions
Conventional HVDC Transmission - Advantages

- HVDC Offers many advantages over Ac Transmission
 - Lower Transmission losses
 - Smaller rights of way
 - Asynchronous Connection Between Ac Networks - improved stability limit
 - Possibility of Long-distance underground/underwater cable transmission
 - etc
Basics of HVDC LCC Converter Operation

Dc Converter Building Block: Thyristor

Fig 2.1: Thyristor
Conventional HVDC: LCC Operation and Limitations:

- Converter Operation is significantly impacted by ac network
- Commutation voltage drop

Vd

Id
However there are some disadvantages:

- The terminating ac networks must provide the commutation voltage
- Require reactive power at the converter which must vary with loading (i.e. switched filter banks)
- Difficulty in operating into weak ac systems (Short Circuit ratios under 2)
- Generates Ad and Dc side Harmonics
New HVDC Converter Configurations

• New converter configurations have been developed to address these issues:
• Capacitor Commutated Configurations
 – CCC
 – CSCC
• Voltage Sourced Converter (VSC) based Configurations
 – PWM / SHPWM based Converters
 – Modular Multilevel Converters (MMC)
Capacitor Commutated Converter

- The CCC uses the voltage across its series capacitors to assist in the commutation process.
- It can operate into very weak ac networks.
- The reactive power absorbed by the converter is minimal.
- Can be operated even with leading power factor.
CCC Operation

(a) Ac Current

(I_d = 1 kA)

(b) Cap. Voltage

(V_{cap}(kV))

(c) Line-line voltages

(L-L Voltage (kV))
Reactive Power Requirement
Ac Filter Issues

- A low Mvar filter is also sharply tuned and hence subject to detuning with component variations.
- Solution:
 - Contune Filter (inductor can be tuned via bias dc current)
 - Active Ac Filter
CCC Steady State Operating Characteristics
CCC Configuration: Advantages

- The risk of commutation failure is minimized—can operate into very weak ac networks.
- The apparent extinction angle (measured w.r.t. converter bus) is small, even negative—hence power factor is near 1.0.
- Filter switching can be avoided.
- Although valves are more expensive, the converter transformer is cheaper and the valve short circuit current is smaller than for the LCC.
- The Series Capacitors do not cause ferroresonance, as they are out of the circuit when converter is blocked.
CCC Configuration: Disadvantages

- The converter cost is slightly larger
- The series capacitors must be protected against overvoltages resulting from overcharging
- The energy storage on the series capacitors negatively impacts the dynamic response in unbalanced conditions (i.e. recovery from I-g faults)
CCC Installations worldwide:

• Garabi Converter Station, Brazil/Argentina

• 2200 MW, +/- 70 kV back to back system connecting 50 Hz and 60 Hz networks

• CCC used because SCMVA can be as low as 2000

• CCC Avoids installation of Synch. Compensator

Courtesy: ABB
Garabi CCC HVDC: Major Components

Outdoor Valves

“Contune” Filters

Series Capacitors

All Pictures: Courtesy ABB
• Sixth in sequence of Back to Back HVDC Stations connecting the Eastern and Western North American Systems

• 200 MW, +/- 12.85 kV

• CCC selected to lower comm. Fail risk due to extremely weak ac networks.
Alternate Topology: CSCC

- Requires only LCC
- Behaviour very similar to CCC
- Series capacitors must be switched to avoid ferroresonance
- Capacitance level can be adjusted as per system conditions

- Simplifies capacitor arrangement in 12-pulse configurations
- For radial ac feeds, capacitors can be placed in each ac line for accurate control of power in each ac feeder

IEEE Southern Alberta Section, Sept. 12, 2011
New Approaches to LCC: The GPFC

- Filters are between transformer and converter
- Uses a *Conventional* Transformer
- Transformer at remote end can be eliminated
- Results in reduced cost
Cost Distribution for Converter Station

- Civil Works & Buildings: 14%
- Freight & Insurance: 5%
- Valves: 20%
- Other Equipment: 10%
- Installation & Commissioning: 8%
- Engineering: 10%
- Controls: 7%
- Ac Filters: 10%
- Converter Transformers: 16%

Source: Martin Marietta Energy Systems
Oak Ridge National Laboratories,
PO Box 2002, Oak Ridge,
TN 37831-6501, U.S.A.

Fig 2.24: Cost Distribution for a DC Converter Station
IEEE Southern Alberta Section, Sept. 12, 2011

GPFC-HVDC 12-pulse arrangement

Fig 5.19 Twelve Pulse GPFC Scheme
Voltage Sourced Converter (VSC) Based HVDC

- Thyristor Based Converters generally require an ac network to provide commutation voltage
- Hence they are significantly affected by ac system conditions, etc.
- The VSC uses switches that can be turned on as well as turned-off using externally generated commands
- Hence the impact of ac system conditions on performance can be minimized
VSC: Basic Operating Principle

VSC Switches are turned on and off on command.
Three Phase Arrangement
VSC Voltage Magnitude and Phase Control

- Pulse Width Modulation
- Fundamental freq. component of output follows the desired ‘signal’ reference waveform
- Harmonics are pushed to the high (easily filtered) range
- Disadvantage:
 - Difficult to extend single bridge to High Voltages
 - High Switching Losses
VSC: Real and Reactive Power Control

Id* controls the real power
Iq* controls the reactive power

Id* is the output of a dc bus capacitor voltage controller

Fig 2: PWM Waveforms
Decoupled Control ensures that an order change of id* does not cause a transient in iq (and vice versa)

VSC versus LCC HVDC

<table>
<thead>
<tr>
<th>LCC HVDC</th>
<th>VSC HVDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line-commutated</td>
<td>Gate-turnoff</td>
</tr>
<tr>
<td>Current Source</td>
<td>Voltage Sourced</td>
</tr>
<tr>
<td>Poorer performance with weak ac systems</td>
<td>Less affected by system strength</td>
</tr>
<tr>
<td>Cheaper for High Power</td>
<td>More expensive, but may be comparable when all aspects are considered</td>
</tr>
<tr>
<td>Lower Losses</td>
<td>Higher losses (improved by new topologies)</td>
</tr>
<tr>
<td>Power direction reversed by voltage reversal</td>
<td>Power direction changed by current reversal</td>
</tr>
<tr>
<td>Difficult to use in a dc grid</td>
<td>Well suited for dc grid</td>
</tr>
<tr>
<td>Ideal for dc transmission with overhead lines</td>
<td>Ideal for weak ac systems, cable transmission or dc grids</td>
</tr>
</tbody>
</table>

![Diagram](image)

IEEE Southern Alberta Section, Sept. 12., 2011
Example of VSC HVDC: Troll Link

- **Purpose:** To Run Compressor Motors for Offshore Gas Extraction
- **Gas Pressure from Wells decreases as gas is extracted, hence a compressor is needed to force gas through pipeline**
- **A conventional precompression project, with gas turbines, would have resulted in annual emissions of some 230,000 tons of CO2 and 230 tons of NOx.**
Location: Offshore Norway
One Half of Troll HVDC System
Troll VSC HVDC: Ratings

Main data
- Rated power: 2x40 MW
- DC voltage: ±60 kV
- AC system voltage: 132 kV
- AC motor voltage: 56 kV

AC filters
- Kollsnes: 39’th and 78’th harmonic
- Troll A: 33’th and 66’th harmonic

IGBT valves
- Valve type: Two level
- Cooling system: Water
- IGBT type: 2,5 kV/500 A

Cable
- Type: Triple extruded polymer
- Cross section: 300 mm²
- Length: 4 x 70 km

Transformers (Kollsnes only)
- Type: Three-phase, two winding
- Rated power: 52 MVA
Multilevel Modular Converter (MMC)

- PWM converters produce a waveform with high level of higher order harmonics
- Result: High Switching Losses, EMI, Stresses etc.
- With High Voltages, Device ratings become an issue

Simple Voltage Sourced Inverter
Basic unit of MMC scheme – Submodule

\[T_x \] – IGBT
\[D_x \] – Diode
\[C \] – Storage Capacitor

\[x = 1, 2 \]
Each submodule acts as a controllable voltage source.

Control States of a Sub-module

<table>
<thead>
<tr>
<th>Device ON</th>
<th>V_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW$_1$</td>
<td>V_c</td>
</tr>
<tr>
<td>SW$_2$</td>
<td>0</td>
</tr>
</tbody>
</table>
MMC Topology

MMC basic scheme

- $+V_d$
- $-V_d$

1. T_1, D_1, T_2, D_2, C
2. SM_i, SM_j, SM_n
3. B, C

Equations:

$$i + V_d - V_d = 0$$
Introduction – MMC Topology

MMC basic scheme

![Diagram showing MMC topology]

Phase Voltage

(n = 10)
MMC Controls

- Reference Waveform is quantized to determine switching instants
- Special algorithms for Capacitor voltage balancing and ensuring sharing of module duty
- Higher level controls identical to other VSC topologies (i.e. decoupled id/iq control etc.)
Trans-Bay HVDC Project

• **Purpose:**
 – Congestion Relief
 – Improvement of security of supply
 – Retirement of Generation in San Francisco Area

• **Customer** Trans Bay Cable, LLC

• **Location** Pittsburg, California, and San Francisco, California

• **Power Rating** 400 MW

• **Voltage levels** ± 200 kV DC, 230 kV /138 kV, 60 Hz

• **Type of plant** 85 km HVDC PLUS submarine cable

• **Type of Thyristor** IGBT
Transbay Cable (San Francisco-Oakland)

Trans Bay Cable Project – Submarine Cable Route

Courtesy: Siemens
Trans Bay Cable Project – Need Study Results: Plots Showing Greater Bay Area Power Flows – Jefferson-Martin ON, Hunters Point OFF, Potrero (or CCSF Peakers) ON, Trans Bay Cable OFF

Courtesy: Siemens
Trans Bay Cable Project – Need Study Results: Plots Showing Greater Bay Area Power Flows – Jefferson-Martin ON, Hunters Point OFF, Potrero (or CCSF Peakers) OFF, Trans Bay Cable ON

Courtesy: Siemens
HVDC Supergrids?

- VSC Converters enable construction of HVDC Grids
- Reduced Losses
- Increased power capacity per line/cable vs. AC
- Underground/Underwater or reduced rights of ways imply:
 - lesser right of way limitations,
 - lower visual impact and lower EM fields
- Stabilized AC & DC grid operation – AC networks can be asynchronous
- Applicable for Harnessing Multiple off-shore windfarms
Concluding Remarks

- HVDC Transmission Technology is evolving to adapt to the change in attitudes about energy

- The barriers on conventional LCC HVDC imposed by the ac system conditions are being overcome

- CCC Technology extends the range of thyristor based converters

- VSC technology is promising - less influenced by the ac network

- Recent innovations such as the MMC are reducing losses and making VSC technology very attractive

- The future is bright - radical changes in the power network, such as dc grids are on the horizon