SCADA
The Heart of an Energy Management System

Presented by: Doug Van Slyke
SCADA Specialist
What is SCADA/EMS?

- **SCADA**: Supervisory Control and Data Acquisition
 - Retrieves data and alarms from remote sites
 - Enables control of devices or machines at remote sites

- **EMS**: Energy Management System
 - Uses SCADA data for real-time decision making
 - Uses SCADA data in advanced applications for real-time analysis
 - Archives data for future analysis
What did we do before SCADA?

- Rare sites had data acquisition systems (DAS)
 - Typically only analog data and slow update times
- Some critical sites were manned 24/7
 - Generators - Substations - Pumping Stations
- Some sites were checked on a periodic basis
 - Manned during the day or checked daily on key sites
 - Monthly/weekly checks on lower priority stations
- Some sites were visited on request
 - Switching of voltage control devices
 - Switching of devices to isolate equipment
What has made SCADA affordable?

- **Communications**
 - Technology advancements
 - Cost of communications
 - Bandwidth availability

- **Information Technology**
 - Use of common operating systems
 - Switched networks
 - Off the shelf hardware (no longer proprietary)
 - Processing power
Processors - Then and Now

1980’s

Today
Why do we need SCADA?

- Reduce requirement for 24/7 on-site manpower
- Closer monitoring of system conditions
 - Quick response to outages, leaks, equipment issues
 - Proactive actions to maintain system stability
 - Reduce equipment damage
- Early detection of equipment failures
 - Notification of a problem (gassing) can save big $$’s
- Field techs better informed of failure cause
 - Have the right equipment and parts on the truck
 - Have the appropriate manpower on site
How does SCADA differ from a DCS?

- **DCS is typically within a closed environment**
 - Chemical Plant
 - Power Plants and Boiler Controls
 - Water Management Systems

- **Communications is direct to the end device**
 - Proprietary protocols
 - Standard protocols (Modbus)

- **Built in automation logic**
 - Automatically operates devices based on pre-defined conditions
Typical SCADA Communication Path

SCADA Data Flow Chart

- **Substation #1**
 - DCS
 - Brk’s SW’s
 - Meter Relay
 - RTU
 - PLC
 - Dedicated Microwave / Radio / Satellite

- **Substation #2**
 - Brk’s SW’s
 - Meter Relay
 - PLC
 - Modem
 - Dial Up via TELCO

- **Comm Server**
- **Or**
- **FEP**

- **SCADA**
 - ICCP
 - Snapshots
 - SCADA
 - Historian
 - DMS OMS/FDIR/WFMS
 - Alarms
 - Trending
 - Power Flow Apps
 - SOE

- **EMS / SCADA**

- **Independent System Operator (ISO)**
 - TELCO Line (x2)

- **User Work Stations**
 - One-line Drawings
 - Advanced Applications
 - Alarm Manager
 - Graphs / Trends
What are the key field components?

- **End Devices**
 - IED’s (Meters-Relays)
 - Transducers
 - DCS

- **RTU – PLC – DCS**
 - Collect data from IED’s and transducers
 - Interface to communication system
 - May have a built in SOE recorder with remote access

- **Local HMI**
 - Allows monitoring and control locally

- **Communications Interface**
 - Connects RTU, PLC or DCS to communications network
What are the key components of SCADA?

- **Front End Processor**
 - Communications protocol interface
 - Point mapping to RTU or PLC
 - Sequence of Events (SOE) recording

- **SCADA Database**
 - Mapping to FEP or Communications Server
 - **Data Types**: Analog, Status, Setpoint, Accumulator
 - **Controls**: Setpoint, Binary, Pulse
 - Data Type Configurations:
 - Status: Normal/Abnormal States
 - Analog: Violation limits, Rate of Change (ROC) limits
 - Setpoint: Min/Max limit
Key components of SCADA (cont)

- SCADA Data Type Examples
 - Status
 • Breaker, valve, switch, relay, gate, door, alarm, level limit, remedial action scheme, generator, fire, etc.
 - Analog
 • Power flow, product flow, temperature, pressure, voltage, distance to fault, transformer tap position, etc.
 - Setpoint
 • Generator output, set voltage, DC convertor output, stacking order,
 - Accumulator
 • Energy metering, product metering
Key components of SCADA (cont)

- SCADA Control Examples
 - Breakers, Switches, Relays, Valves, Pumps, Protection Schemes, Flow Gates
 - **Transformers**: Auto/Manual - Tap Raise/Lower – Independent/Parallel
 - **Turbines**: Start/Stop, Emergency Shutdown, Generator Exciter Raise/Lower, Gas On/Off
 - **DC Convertor**: On/Off, Power Direction, Power Flow, AC Voltage
 - **Static VAR Compensators**: Voltage Setpoint, VAR Setpoint
What do we do with this data and functionality?

- **Monitor system and equipment health**
 - Voltage monitoring
 - Equipment loading
 - Equipment status (oil level, temperature, fault type)
 - Site security and video feedback

- **Maintain system security and stability**
 - Instantaneous switching of multiple load devices
 - Sequential switching of devices
 - Remedial Action Scheme (RAS) status
 - Protection Scheme status
 - Switching of voltage control devices
What do we do with this data and functionality? (cont)

- **Start/Stop machines**
 - Turbines/Generators
 - Motors/Pumps

- **Monitor asset maintenance requirements**
 - Isolated generator hours of operation
 - Device operations versus scheduled maintenance

- **Pass data to advanced applications**
 - System stability and contingency analysis
 - State estimation
 - Trending
 - Disturbance monitoring and playback
What do we do with this data and functionality? (cont)

- Pass data to advanced applications (cont)
 - Distribution Management System
 - Outage Management System (OMS)
 - Fault Detection, Isolation and Restoration (FDIR)
 - Workforce Management System (WFMS)
 - Data historian (PI, Oracle, Sybase etc.)
 - Outage or fault analysis
 - PMU data **not** provided via SCADA
 - Operator training simulator

- Exchange data with other entities (ISO)
- Pass data to backup or regional control centers
System Criticality

- A SCADA system is often deemed critical
- Outage time is unacceptable (.9999 availability)
- All servers are redundant with dual power supply
- All network devices are redundant
- All firewalls are redundant
- There is no single point of failure internally
- North American ISO’s abide by NERC CIPS
- Electrical utilities in Alberta abide by AESO CIPS
- Driven by 9/11 and 2003 Northeast Blackout
A typical EMS hardware configuration
Break Time

I need a donut!!!!!!!
SCADA/EMS System Procurement

- There are not many SCADA vendors out there
 - The number you get to choose from depends on your system requirements

- SCADA vendors have different market focuses
 - Some are strictly oil, gas and water
 - Some are strictly electrical utility
 - Some will claim they do all of the above
 - Some target large systems requiring customization
 - Some target small systems requiring minimal change
 - Some have specific applications they promote
SCADA/EMS System Procurement

- Ensure you pick an appropriate project team
 - Include the designers, maintainers, data users and MOST IMPORTANTLY the end users
 - You don’t need a cast of thousands

- Clearly define your SCADA needs
 - Have vendors come on site to present their systems
 - Invite multiple vendors as all systems have different functionalities
 - Ensure that what they show you isn’t vapour ware
 - Develop functional spec from your needs and what vendors presented
SCADA/EMS System Procurement

- Clearly define your SCADA needs (cont)
 - Do we require a test and development environment
 - Do we require an off site backup system
 - Do we need a training simulator
 - What type of redundancy do we really need
 - What are our cyber security requirements
 - Seek an external consultant to help define your needs

- Have vendors demo their cyber security features
 - Do they use encryption between third party software
 - How do they establish an ESP and DMZ
SCADA/EMS System Procurement

- Have vendors provide you with a customer list
 - List should include:
 - New customers with a recently installed system
 - Long term customers who have experienced upgrades
 - Customers with needs similar to yours

- Spend the $$’s to go to customer sites for a visit
 - Be sure to interview designers, maintainers, end users
 - Ask what the upgrade experience was for each group
 - Ask what they like/dislike about the system
 - Ask about cutover process from old to new
 - Would they buy this system again
 - Are they happy with the vendor support/training
SCADA/EMS System Procurement

- Have vendors provide a detailed training plan
 - Does it include training for designers, maintainers and end users
 - Ensure that it is hands on training
 - What are their training options (on-site, online, vendor site)

- What additional training does your staff need
 - Are the maintainers well versed in the OS
 - Are there any hardware training requirements

- Ensure your contract has clear milestones
SCADA/EMS System Procurement

- **Licensing**
 - Ensure your system is sized appropriately at purchase
 - You don’t want to increase your system size right after installation and pay increased licensing costs
 - Increased sizing is often cheaper at purchase
 - You don’t want to pay for a system size you don’t need
 - How are the system/databases/applications licensed
 - Some vendors charge extra for point additions
 - Some charge extra for adding additional stations
 - Some charge extra for increasing the size of a database
 - What are the licensing costs for adding another GUI
 - Does a licensing change require any system down time
SCADA/EMS System Procurement

- **Maintenance Contracts**
 - Find out the details of the maintenance contract
 - Are multiple types of maintenance contracts offered
 - Is it limited by the number of problems reported
 - Does it include the cost of release and version upgrades
 - How often are new releases and versions available
 - Does vendor test and certify OS patches
 - Does patch testing meet the local regulatory rules
 - Does the vendor provide 24/7 support
 - What is the cost of a maintenance contract
 - Does the cost increase if database sizing is increased
 - Include a multi-year maintenance contract if possible
 - Are there triggers that will cause the cost to increase
System Upgrades

- How often are system upgrades available
- How does the vendor manage version control
- How does the vendor track customizations
- How are system upgrades completed
 - Are vendor staff required on site to do the upgrade
 - How long does a typical upgrade take (days/weeks/months)
 - How much down time is required during an upgrade
 - Can applications be upgraded without a system upgrade
SCADA/EMS System Procurement

- System Cutover Plan
 - Have the vendor provide a detailed cutover plan if you have an existing system
 - Plan should include a detailed back out plan
 - Ideally have the two systems run in parallel
 - Have the new system run in a monitor mode
 - Can validate data on the new versus old
 - Have new and old consoles side by side if possible
 - Users feel more comfortable if they see the new one working and can get some hands on experience
SCADA/EMS System Procurement

- Customized System versus Shrink Wrapped
 - Customized system pros and cons
 - **Pro**: You should get exactly what you want
 - **Pro**: System is customized to your needs
 - **Con**: Upgrades can be challenging (months vs days)
 - **Con**: Higher cost for initial purchase
 - **Con**: Higher maintenance contract costs
 - **Con**: Your system may be the only one with a bug
 - **Con**: Proprietary hardware (avoid if possible)
Customized System versus Shrink Wrapped (cont)

- Shrink Wrapped pros and cons
 - **Pro**: Initial cost is lower than customized
 - **Pro**: Upgrades are usually less painful
 - **Pro**: Maintenance contract costs are typically lower
 - **Pro**: Someone else’s enhancement is in your upgrade
 - **Pro**: If you have a bug so does everyone else
 - **Con**: May not get all the functionality that you want
 - **Con**: May have to do some of your own customization
 - **Con**: Proprietary hardware (avoid if possible)
Additional considerations

- Confirm that vendor is not using third party software
 - Third party software problem leads to finger pointing
 - Problem resolution may not be given a priority by third party
 - Mitigate this by adding protection into your contract
- Be cautious where vendor is using VMware
- Avoid doing your own customizations
 - Customer is responsible for customized software during upgrades
 - Vendor system changes may impact your customization
- What about your HVAC, UPS and power supply
Questions Anyone?