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EE301 Electricity, Magnetism and Fields
Final Examination
Professor Robert E. Johanson

Welcome to the EE301 Final. This is a closed book and closed notes examination. A
formulae sheet is attached. You may use a calculator. The examination lasts 3 hours.

Answer all five of the problems.

Show your work; credit will be given only if the steps leading to the answer are clearly
shown. If a symmetry argument is used, it is sufficient to write "By symmetry we know
that...". Partial credit will be given for partially correct answers but only if correct
intermediate steps are shown. Each problem is weighted equally, subparts of a problem
are weighted as indicated

None of the problems require intricate mathematical manipulations. If you get stuck with
an impossible integral or equation, you are likely approaching the problem incorrectly.



Problem 1

a) (7) Three point charges are arranged as follows: 50 nC is at (0,0.5), -5 nC is at (0,0.1),
and 15 nC is at (0.2,0.2). The locations are in Cartesian coordinates (x, y) and the
distances are in meters. Calculate electric field vector and the electric potential at the
origin, and the electric flux through a spherical surface with radius 0.4 m centered on the
origin.

b) (6) A charge density only depends on the variable p (cylindrical coordinates). From
symmetry, what can you conclude about the electric field? |

¢) (7) A hollow metal sphere is filled with a dielectric with relative dielectric constant .
A point charge Q is located in the center of the dielectric. The metal is grounded.
Determine the electric field inside the dielectric, inside the metal and outside the metal
sphere. Indicate with a drawing (using +, —) where there are bound charges in the
dielectric and free charges in the metal.

Problem 2

A current I flows through a straight, infinitely long, hollow metal wire. The hollow
inside the wire has radius a and the wire has outer radius b. The current density is
uniform inside the metal of the wire. Use Ampere’s Law to determine the magnetic field
inside the hollow, inside the metal and outside the wire.




Problem 3

An electromagnetic plane wave in free space has an electric field given by

E = (100G, +100e’™'%G,,)e/**) v/m

a) (6) Describe the polarization of the wave.
b) (7) Calculate the time-averaged power density (Poynting vector) of the wave.

¢) (7) A loop antenna consists of a circular loop of wire. A changing magnetic flux
through the loop from a passing electromagnetic wave induces an emf via Faraday’s law.
For the above EM wave, which of the orientations (1, 2, 3) shown will generate an emf
around the loop? Estimate the emf induced in the loop for those orientations that produce
an emf assuming the radius of the loop a is very much smaller than the wavelength of the
EM wave.

Loop 1 is in the x-z plane, loop 2 is in the y-z plane, and loop 3 is in the x-y plane.



Problem 4

a) (5) A lossless transmission line has an inductance of 0.64 pH/m and a capacitance of

400 pF/m and is used to carry signals with a frequency of 500 MHz. Calculate the
propagation constant, wavelength, characteristic impedance, and the velocity of
propagation.

b) (7) An antenna has a purely real impedance of 75 at 300 MHz. It is directly
connected (i.e. no matching network) to a 0.2 m length of 50Q2 transmission line. The

velocity of propagation in the transmission line is 1.5 x10® m/s. Calculate:
the reflection coefficient off the antenna
the input impedance of the transmission line

¢) (8) A transmission line with characteristic impedance Z, = 50Q is terminated with a
load with impedance Z; = (25 + jS0)Q. Exactly A/4 from the load, a shorted stub is

inserted across the transmission line. The stub is made from transmission line with the
same Z; and is exactly A/8 long (see diagram). Calculate the reflection coefficient.
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a) (3) On the Smith chart, clearly label the following locations:

the reflection coefficients I'=1and I'=j
a capacitance of 10pF used with a 50Q coaxial cable at 1 GHz
a normalized load impedance of 5 + j5

b) (17) A transmission line with a characteristic impedance of 80€2 is connected to an
antenna with a complex impedance of (240 - j112)Q2. The antenna is designed to
broadcast at a frequency of 500 MHz. Design a matching scheme so that no power is
reflected. You may use any matching scheme but you must clearly describe it in your
booklet and determine the relevant parameters on the Smith chart. Be sure to label the
Smith chart clearly.

(Put your name and student number on the Smith chart and put the Smith chart inside
your booklet.)



Symbols and Constants
force

charge

electric field
displacement field
polarization field
magnetic field

magnetization
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Vector Calculus
unit vector cross products:

Cartesian
cylindrical

spherical

cylinders

spheres

curl

Eleétrostatics

Coulomb’s law

point charge field:

point charge at origin

charge distribution

Electric flux

magnetic flux density field

electric or magnetic flux

Vv electric (scalar) potential
A magnetic (vector) potential
o charge density

I current

j current density

gg  dielectric constant

up  relative permeability

£y ~8.85x10712 F/m
to =47 x1077 N/AZ

Gy Xay =4, ayXd; =0y d; X4y =40,
dp Xdy =d, Gyxd;=d, d;xdp=dy
4, Xag =04y dgxdy =08, dyxa, =dg

Vol = ma’L Area=2ma® +2mal

dV = pdpdedz

Vol =(4/3)ma’  Area = 47a®

dV =r?sin0drd6dep dS =r?sin0d6de

Vi s . ﬁAx_%)a L [Py _ A,
dy dz )" \dz o) \ox
Fz =——Q1Q22 (—il ﬁ =QE
4regR
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Gauss’s law

relating EandV

capacitance

parallel plate capacitor

Poisson’s equation

Laplace’s equation

linear dielectrics

dielectric boundary
energy
Magnetostatics
magnetic flux

law of Biot-Savart
Ampere’s law
inductance

vector potential

relating Bto A
linear materials

boundary conditions

energy

enclosed
S

¢ D-ds = giree
S

g E-dS=00 - [pdv
V

enclosed = f Ptree AV
V

.3 bound
fP'dS -9 r?;gsed =~ Pvound ¥
14

E=-VV
B
C=0/V

C = Eofrd

VZV = —p/SOER
Vi =0

D= soeRE

Er and Dy continuous

W=le-13dV
2 14

(I)=M0fﬁ'd§
S

. Idl xa
H=¢ -
4nR

gﬁH dl = Tenclosed = f] ds§
loop

L=N®/I
fqudV
14

B=VxA4
B= MOMRFI

VAB=—fE'dl

of area A and plate separation d

j;f==.1”~;.)<ziR av

47R?

Hrp and By continuous across boundary

W=1f1§-1?1dV
2 14



Electromagnetics

Maxwell’s equations V:-D=p V-B=0
TxE=-B Vxi=j+2
ot ot
Faraday’s law emf = _4 f B-dS
dr'g
electromagnetic waves |Ho|=|Eq|/m 1 =~/(Uotr)/(€9ER)
Poynting vector P= Re(E) x Re(H)

. = _ 2 L
time-averaged P (P)= %ﬂlE 0[ (valid when E and H are in phase)
Transmission lines
propagation constant Y= \/(R + jJoL)(G+ joC)=a+ jfB

B=2x/A
propagation velocity v, =w/p

characteristic impedance ~ Z; = \/( R+ jowL)I(G + jowC)

reflection coeff. I'= ZL=%
Z; +2Z,

transmission coeff. T=T+1
standing wave ratio SWR =(1+ IFI) /(1- IFl)
, . Z; + jZytan Bl

Ziy = [1=0
input impedance in =20 Zo + jZ, tan i =

1+Te /2P
Zin=12y m 120

quarter wave transformer  Z;, = Zé 1Z;



