
EE 332 Real Time Systems
Midterm Examination Solution

Friday February 13, 2004
2:30 pm to 4:30 pm

Student Name
Student Number

Question Mark

#1 / 15
#2 / 20
#3 / 25

TOTAL / 60

General:
• Two hours (2:30 pm to 4:30 pm)
• Open book and open notes

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 2 of 8

1. 15 Marks (3 marks each)
a) Why is it important for a real-time system to have a watchdog timer? Is a timer interrupt

routine an appropriate point in the software to reset the watchdog timer, why or why not?

A watchdog timer guards against system malfunctions such as deadlocks (infinite loops), power
glitches, time-overload by resetting the system, especially important for unattended/remote systems.

A timer interrupt routine is NOT an appropriate point in the software to reset the watchdog timer as all
it may indicate that interrupts are still working, it does not guard against failures such as infinite loops
in the foreground processes.

b) Show the Moore Finite State Automata to accept the words “cab”, “cob”, “cat”, “cot” but no
others from the alphabet L={a, b, c, t, o }.

“c” “a,o” “b,t”

“a,b,t,o”

“b,c,t” “a,c,o”

“a,b,c,t,o”

“a,b,c,t,o”

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 3 of 8

c) Describe how the BP register is used to access the parameters and local variables for C functions
on an 8086 microprocessor (e.g., what is the address of the first parameter and what is the
address of the first local variable).

2nd Parameter

1st Parameter

Return Address

Saved BP

1st Local Variable

2nd Local Variable

BP

The BP is used as a sort of stack frame pointer,
providing a consistent means of accessing the
parameters to a function and the local variables
of a function.

When using 16-bit return addresses, the 1st
parameter is always at [bp + 4] and the first
local variable at [bp – 2].

d) Describe the difference between recursion and reentrancy.

Recursion is the ability of a routine to call itself directly or indirectly (via other intermediate routines).

Reentrancy is the ability of a routine to be used concurrently by more than one task.

By inference, recursive routines are also reentrant

e) Give two advantages and two disadvantages of Polled Loop systems.

Advantages:

• Simple to write and debug
• The response time is easy to determine
• Excellent for handling high-speed data channels

Disadvantages:

• Not generally sufficient to handle complex systems
• Inherently waste CPU time
• May be too slow response time for certain parts of the system

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 4 of 8

2. 20 Marks (10 + 10)
Consider a hypothetical microprocessor called the CPU332v2. The CPU332v2 has the following
properties:

• One 16-bit accumulator ACC
• Three 16-bit general purpose registers R0, R1, R2
• A 16-bit stack pointer SP
• A “push” instruction can push any register (ACC, R0-R2) onto the stack.
• A “pop” instruction can pop any register (ACC, R0-R2) from the stack.
• Code addresses are 32-bits in size, saved in a “little-endian” format (low order byte to high

order byte).

a) Show the “pseudo assembler” for a “Yield()” function for the CPU332v2. The pseudo assembler
should show the order of pushes, pops, and saving and restoring of stack pointers. Indicate
which registers are pushed and in what order. The code to determine the next task to run can be
glossed over (but you should still indicate where in your Yield() function this occurs).
Yield:

Push ACC

Push R0

Push R1

Push R2

Move SP to StackPointers[CurrentTask]

<Determine next task to run, set new value for CurrentTask >

Move StackPointers[CurrentTask] to SP

Pop R2

Pop R1

Pop R0

Pop ACC

Return

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 5 of 8

b) The interface of created tasks is required to be:
void Task(short sparm, long lparm);
sparm is a 16-bit integer, lparm is a 32-bit integer (assume also little-endian)

For your Yield() function from (a), show the organization, addresses and values of the initial
stack for a Task whose entry address is 0x11223344 and whose stack space goes from 0x2800 to
0x28FF (inclusive). Remember to show required initial values for any values on the stack (or
XXXX for don’t cares). Also indicate the value of the “initial stack pointer” (suitable to start the
task via a call to Yield()). Show the stack for two potential different modes of operation of the
CPU332v2:

i. Stack grows from low addresses to high addresses. For a push, the stack pointer is first
incremented and then the value is written to the stack:

Address Value Description

0x2814 XXXX R2

0x2812 XXXX R1

0x2810 XXXX R0

0x280E XXXX ACC

0x280C 0x1122 Task Address (Most Significant Word)

0x280A 0x3344 Task Address (Least Significant Word)

0x2808 XXXX Dummy or Task Terminate (MSW)

0x2806 XXXX Dummy or Task Terminate (LSW)

0x2804 Value of sparm sparm

0x2802 Value of lparm lparm (MSW)

0x2800 Value of lparm lparm (LSW)

Initial SP = 0x2814

ii. Stack grows from high addresses to low addresses. For a push, the value is written to the
stack and then the stack pointer is decremented:

Address Value Description

0x28FE Value of lparm lparm (Most Significant Word)

0x28FC Value of lparm lparm (Least Significant Word)

0x28FA Value of sparm sparm

0x28F8 XXXX Dummy or Task Terminate (MSW)

0x28F6 XXXX Dummy or Task Terminate (LSW)

0x28F4 0x1122 Task Address (Most Significant Word)

0x28F2 0x3344 Task Address (Least Significant Word)

0x28F0 XXXX ACC

0x28EE XXXX R0

0x28EC XXXX R1

0x28EA XXXX R2

Initial SP = 0x28E8

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 6 of 8

3. 25 Marks (10 + 15)
Consider the following sequence 1, 1, 1, 3, 5, 9, 17, ... Except for the first three numbers, each number
is the sum of the preceding three numbers. A recursive routine for determining a particular number
in the sequence is given by:

int f3(int num)
{
 int result;

 if(num < 3)
 {
 result = 1;
 }
 else
 {
 result = f3(num - 3) + f3(num - 2) + f3(num - 1);
 }

 return result;
}

a) For a call of “f3(5)”, show how the recursive algorithm works by showing the values of the
parameters and the order of each call to f3(), how many times f3() is called, and the return
value of each f3().

f3(5)
 f3(2)
 return 1
 f3(3)
 f3(0)
 return 1
 f3(1)
 return 1
 f3(2)
 return 1
 return 3
 f3(4)
 f3(1)
 return 1
 f3(2)
 return 1
 f3(3)
 f3(0)
 return 1
 f3(1)
 return 1
 f3(2)
 return 1
 return 3
 return 5
return 9

Total of 13 calls to f3().

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 7 of 8

b) Given the following 8086 assembler code generated from f3() C code, fill in the table on the
following page showing the maximum length call stack when you call “f3(5)”. Indicate the stack
address, element value (if the value is not determinable, indicate with “XXXX”), description of
what the element represents, and the function the code was in when it pushed the value. Start
with the parameter and return address of the call to “f3(5)” and assume the stack pointer has
the value 0xFFF6 before the initial “5” parameter is pushed.

 ; int f3(int num)
 ; {
_f3
 push bp
 mov bp,sp

 ; int result;
 sub sp,2

 ; if(num < 3)
 cmp word ptr [bp+4],3

jge short @2@86

 ; {
 ; result = 1;

mov word ptr [bp-2],1

 ; }

jmp short @2@114

@2@86:
 ; else

 ; {
 ; result = f3(num - 3) + f3(num - 2) + f3(num - 1);
 mov ax,word ptr [bp+4]
 add ax,-3
 push ax
 call near ptr _f3
 pop cx

 push ax

mov ax,word ptr [bp+4]
 add ax,-2
 push ax
 call near ptr _f3
 pop cx

 pop dx
 add dx,ax
 push dx

mov ax,word ptr [bp+4]
 dec ax
 push ax
 call near ptr _f3
 pop cx

 pop dx
 add dx,ax
 mov word ptr [bp-2],dx
 ; }

@2@114:
 ; return result;
 mov ax,word ptr [bp-2]

 ; }
 mov sp,bp
 pop bp
 ret

 Student Name: ________________________

Midterm Solution 2004-02 EE 332 Real Time Systems Page 8 of 8

Address Value Description Function

0xFFF4 0x0005 Parameter to f3(5) main()

0xFFF2 XXXX Return address to function calling f3(5)

0xFFF0 XXXX Saved bp f3(5)

0xFFEE XXXX Local variable result

0xFFEC 0x0004 Result of f3(2) + f3(3)

0xFFEA 0x0004 Parameter to f3(4)

0xFFE8 XXXX Return address to f3()

0xFFE6 0xFFF0 Saved bp f3(4)

0xFFE4 XXXX Local variable result

0xFFE2 0x0002 Result of f3(1) + f3(2)

0xFFE0 0x0003 Parameter to f3(3)

0xFFDE XXXX Return address to f3()

0xFFDC 0xFFE6 Saved bp f3(3)

0xFFDA XXXX Local variable result

0xFFD8 0x0001 Result of f3(0)

0xFFD6 0x0001 Parameter to f3(1)

0xFFD4 XXXX Return address to f3()

0xFFD2 0xFFDC Saved bp f3(1)

0xFFD0 XXXX Local variable result

 OR

0xFFD8 0x0002 Result of f3(0) + f3(1)

0xFFD6 0x0002 Parameter to f3(2)

0xFFD4 XXXX Return address to f3()

0xFFD2 0xFFDC Saved bp f3(2)

0xFFD0 XXXX Local variable result

