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EE.351: Spectrum Analysis and Discrete-Time Systems
SOLUTIONS TO MIDTERM EXAM, Fall-2003

1. (Signal Transformations)
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2. (Convolution)
[5] (a) y[n] = z[n] * h[n] = 3 _re _ z|k]h[n — k] = z[0]h[n] + z[2]A[n — 2].
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(b) Consider a continuous-time LTI system with impulse response A(t) and input z(t)

[5] as shown below. Find and neatly sketch the output y(2).
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3. (Properties of Fourier Series Coefficients)

[8] (a) Signals (i), (iii) and (iv) are real-valued since their magnitude spectra are even and
phase spectra are odd. Signal (ii) is a complex-valued since its phase spectrum is not

odd.

[2] (b) Since e/*™ = —1 and &° = 1, the FS coefficients of signal (iii) are real-valued. Thus

signal (iii) is both real-valued and even function.

None of the signal is both real-valued and odd since all the four signals have DC
component. A real-valued odd signal must have a zero DC component, i.e., ag =
Tlo I To/2 1(t)dt = 0. Remark: If the DC component is removed, then the signal (iv)

—To/2

is both real-valued and odd because its FS coefficients are purely imaginary and odd

(e:tjw/2 = :i:])
Magnitude (volts) Phase (rad)

e
1]

4

® |
L] 2324 | |
4-3-2-10] 1 2 3 4 q

-74

Magnitude (volts) Phase (rad)

(i)

)
b
&

4-3-2-10] 1 2 3 4 g 43-2-10] 1 2 3 4 g

_xd
Magnitude (volts) Phase (rad)
x4+
(i) | I
RN 8 432 | @
4-3-2-10] 1 2 3 4 g -1o|233q,
- X+
Magnitude (volts) Phase (rad)
x4
@iv) x/2+
A B B IRy N N
4-3-2-10] 1 2 3 4 g of 1 2 3 @
+-2/2
T+-x

- EE.351: Spectrum Analysis and Discrete-Time Systems, University of Saskatchewan



" Name: Student Number: Page 6

4. (Fourier Series Representation)

[5] (a) A discrete-time periodic signal z[n] is real-valued and has a fundamental period
N = 5. The Fourier series coefficients for z[n] are -

1 1 1

ag = 2, al=a*1=§—§j, a2=ai2=§j

(i) Determine and neatly sketch the magnitude and phase spectra of z[n] over
at least two periods of a.

ao=2 - |ao|=2, ZG,Q:O
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(ii) Express z[n] in the form: z[n] = Ap + Z A cos(wen + o).
k=1
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The fundamental frequency is wp = 27/5.

2
z[n] = Z apelkoon = Zakeik““"
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[5] (b) Consider the following continuous-time periodic signal z(t)

x(1)

NN »f

(i) The fund. period is Tp = 2 and the fund. frequency is wy = 2 = .

(ii) To compute the Fourier series coefficients a; of z(t), consider z(t) in one
period, from —1 <t < 1. Then z(t) = —t, —1 < t < 1. Furthermore,
observe that z(t) is a real-valued, odd function. Thus the FS coeflicients are
purely imaginary. Hence By = 0 and a; = jCj, where
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The DC component of z(t) is 0 since z(t) is a real-valued, odd function.

To conclude
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