Student Number	
----------------	--

University of Saskatchewan

EE 352 Communication Systems I

Quiz #1 – Jan.30/2003

Time: 20 minutes

Permitted: - text, printed notes, student's own *hand-written* materials Use the space below each question for your answer.

*1. Complete the following drill problem (1 point)

Drill Problem - Amplitude Modulation - For a carrier signal $c(t) = 100 \text{V}\cos 2\pi 20000t$ and the following modulation signals, determine the sinusoidal component amplitudes (in volts) and component frequencies (in kHz).

Modulation Signal	A1	F1	/ A2	F2	, A3	F3	A4	F4
2V cos2π4000t	100	16	100	24	7			
4V cos2π11000t	200	91/	200	3/				_
$2V + 4V \cos 2\pi 23000t$	200	3	200	20	200	43		
$\cos 2\pi 4000t + \cos 2\pi 8000t$	50	12	70	16	50	24	<u>50</u>	28
Checksum	550	40	550	91	250	67	50	28

- *2. When viewed from the end of the positive time axis, which way does the vector $e^{j\omega t}$ rotate? (1 point)
- *3. A rms responding meter reads 1.5 volts when measuring a white noise source that has bandlimited by a 15 kHz lowpass filter. Estimate the meter reading when the filter cutoff frequency is reduced to 5 kHz. (1 point)

*4. An amateur radio signal traveling on a 50 ohm co-axial cable has sinusoidal waveform with peak to peak voltage 7.07 volts. What is the signal level in dBm and dBV. (2 points)

1/5!

$$P = \frac{50}{502} = 0.5 \text{ W}$$

*5. In words, explain the advantages/disadvantages of the following amplitude modulation formats. (2 points)

i) DSB-TC.
advantage: It is easy to do and cron be demandabled though not a disable detector.

disadvantage: It is not my affected to transmit the corrier.

ii) DSB-SC.
advatge: you goin affected by next howing a corrier.

disadvantage: you reed to have more expense demandable devicer.

disadvantage: you need to have more expense demandable; devicer.

disadvantage: you need to have more expense demandable; ?

iii) SSB-SC. advotge: very efficient because the is now corris and you have one half the bandwith to tronsmit.

disadvote: de nadulation equipmit is mare expresse and you are ont allowed iv) VSB-TC. a 7 Hz gap letwer the L6B and the USB. & why does this happen? dratge: cuth the anoutal landwith needed and allows for some evan in denocolulation X

disortate: It take dat of power to trushit and demodutation is

- *6. A television receiver is tuned to channel 6 which has video carrier at 83.25 MHz and audio carrier at 87.75 MHz. The TV receiver uses a superheterodyne system that results in video IF carrier at 43.75 MHz and sound IF carrier at 39.25 MHz. (3 points)
 - i) What is the local oscillator frequency when tuned to channel 6?
 - ii) What are the video and sound image frequencies?