Deep Learning Inference in Facebook

Data Centers:
Characterization, Performance Optimizations,
and Hardware Implications

Jongsoo Park

Facebook Al System SW/HW Co-desigh Team
Sep-21 2018

Team Introduction

* Al System Co-design

* High performance numerical and architectural SW optimizations,
HW performance modeling and recommendations through Machine
Learning-driven Co-design

* Expertise
* HPC and parallel algorithms
* Computer architecture
* Performance optimization and modeling
* Numerical linear algebra, ML, and graph analytics

Outline

Introduction to deep learning inference at Facebook
Computational characteristics

Optimization experience on current HWs (Intel CPUs)
SW/HW Co-design directions

DL Inference in Facebook Data Centers

* Used for core services: personalization and integrity/security

* Diverse data types: images, videos, multi-lingual contents
* Scale to billions of users

1x

0
Y1Q3 Y1Q4 Y2Ql Y2Q2 Y2Q3 Y2Q4 Y3Ql Y3 Q2

Increase of server capacity for DL inference, Xiaodong Wang

DL Application Domains

1. Ranking and recommendation: ads, feed, and search

2. Computer vision: image classification, object detection,
and video understanding

3. Language: translation, content understanding

* Interactions among these: powering recommendation (1)
with visual (2) and linguistic (3) content understanding

Domain 1: Ranking and Recommendation

* Embedding tables demand

* High memory capacity (>10s of GBs) 4

* High memory bandwidth (low arithmetic
intensity) Q
e HBMs are too small. NVMs are too slow |

y

_

dense features sparse features

Figure credit: Maxim Naumov

T

NNs

T

Interactions

NNs

Embedding Lookup

Domain 2: Computer Vision

* Classification
* Bigger model + bigger data = higher accuracy

88 | |

| Source task

| o @ |mageNet (target = source)
sl - __ ____________. e—e |nstagram (940M, 1.5k tags) ||

ImageNet top-1 accuracy (in %)
(00) oo 00
o N AN

~
oo

Model capacity (number of mult-add operations)

Domain 2: Computer Vision

* Classification
* Bigger model + bigger data = higher accuracy

* Object detection and video understanding

* Bigger inputs than classification
» FLOP-efficient models like ShuffleNet with depth-wise convolutions L2

1] Exploring the limits of weakly supervised pretraining. Mahajan et al.

2] Rosetta: understanding text in images and videos with machine learning. Sivakumar et al.

Domain 3: Language Models

* Small batch size for latency constraints
* Attention only models
* Multilingual models

Outline

Introduction to deep learning inference at Facebook
Computational characteristics

Optimization experience on current HWs (Intel CPUs)
SW/HW Co-design directions

128

Roofline Model Recap

B4 - - s e e

* Application flop/byte < System flop/byte =

\@

performance bound by memory BW

peak floating—point performanc

p—
()]
T

* Flop/byte w.r.t. parameters: drives off-chip BW need
when parameters off chip and activations on chip

Attainable GFlops/s
(0]

NN

* Flop/byte w.r.t. parameters + activations: drives off-
chip BW need when activations too big so need to be > |
off chip, or on-chip BW need

N Bp;ra-tio-na.l-lrﬁer?sit-;/ 1 (r;eao-ry:bc;tmd)
Operational Intensity 2 (compute-bound)

.o

1 2 4 8 16
Operational Intensity (Flops/Byte)

1/2
1/4 1

Roofline: An Insightful Visual Performance Model for Floating-
point Programs and Multicore Architectures. Williams et al.

Resource Requirements

Model Types

Op. Intensity
(w.r.t. act &
weights)

Op. Intensity
(w.r.t. weights)

Recommendation

Computer Vision

Language

FCs
Embeddings

ResNeXt101-32x4-48

Faster-RCNN (with
ShuffleNet)

ResNeXt3D-10T

seqgZseq

Model Size (# Max. Live
params) Activations
1-10M > 10K
>10 Billion > 10K
43-8295M 2-29M
6M 13M
2TM 53M
100M-1B >700K

20-200
1-2
avg. 380
Min. 100

Avg. 3.5K
Min. 2.5K

Avg. 22K
Min. 2K

2-20

20-200
1-2
Avg. 188
Min. 28

Avg. 145
Min. 4

Avg. 172
Min. 6

2-20

Observation 1: big embedding with low op. intensity

Model Types Model Size (# Max. Live Op. Intensity Op. Intensity
params) Activations (w.r.t. weights) (w.r.t. act &
weights)
_ FCs 1-10M > 10K 20-200 20-200
Recommendation : o
Embeddings >70 Billion > 10K 1-2 1-2
avg. 330 Avg. 183
ResNeXt101-32x4-48 43-829M 2-29M Min. 100 Min. 28
» Faster-RCNN (with Avg. 3.5K Avg. 145
~omputer Vision ShuffleNet) oM 1M Min. 2.5K Min. 4
Avg. 22K Avg. 172
ResNeXt3D-101 21TM 53M Min. 2K Min. 6
Language seqgZseq 100M-1B >100K 2-20 2-20

* Interesting challenge for future memory system designs

Observation 2: bigger models and activations

Model Types

Model Size (#

params)

Max. Live
Activations

Op. Intensity
(w.r.t. weights)

Op. Intensity
(w.r.t. act &

Recommendation

Computer Vision

Language

FCs
Embeddings

ResNeXt101-32x4-
48

Faster-RCNN (with
ShuffleNet)

ResNeXt3D-101

seq2seq

1-T0M
>10 Billion

43-829M

6M

2TM

100M-1B

> 10K
> 10K

2-29M

13M

58M

>7100K

20-200
1-2
avg. 380
Min. 100

Avg. 3.5K
Min. 2.5K

Avg. 22K
Min. 2K

2-20

weights)
20-200
1-2
Avg. 188
Min. 28

Avg. 145
Min. 4

Avg. 172
Min. 6

2-20

* Need large on-chip memory. Otherwise off-chip memory BW bound for small batch.

Observation 3: tall-skinny matrix operations

e.g., depth-wise convolution

Low utilization with big matrix-matrix unit

Need high on-chip memory BW
More on next slides

Model Types Model Size (# Max. Live Op. Intensity Op. Intensity
params) Activations (w.r.t. weights) (w.r.t. act &
weights)
, FCs 1-10M > 10K 20-200 20-200
Recommendation , -
Embeddings >10 Billion > 10K 1-2 1-2
]]]] avg. 380 Avg. 188
ResNeXt101-32x4-43 43-8295M 2-29M Min 100 Min. 28
- Faster-RCNN (with Avg. 3.5K Avg. 145
computer Vision ShuffleNet) oM 1M Min. 2.5K Min. 4
Avg. 22K Avg. 172
ResNeXt3D-101 2TM 53M Min. 2K Min. 6
Language seq2seq 100M-1B >100K 2-20 2-20

Need for bigger and faster on-chip memory BW

101

10-2

Model runtime (s)

105

106

—y

k—A

. |
S

»~—

Seq2Seq Encoder * Runtime roofline analysis on a

Seq2Seq Decoder , , .
Easter RCNN with ShuffleNet nypothetical accelerator with 100 int8
ResNeXt101-32x4 | Top/s. Solid lines: 1 TB/s on-chip BW.

ResNext3D-101
' Dashed lines: 10 TB/s on-chip BW.

104 |...

10

0 P
On-chip Memory Capacity (MB)

Figure credit: Martin Schatz

Fleet-wide Caffe2 operator execution time breakdown

Conv (4%)

FC (42%) D etc (20%)

(17%) (17%)

0% 20% 40% 60% 80% 100%

* FCis the most time consuming followed by embedding

* Convisonly 4%
* Tensor manipulation (concat, split, transpose, ...): good graph-level optimization

targets

A4

Common matrix shapes

M « operations per weight

Activation matrices

* (Caffe convention: M-by-K activation matrix * K-by-N weight matrix
* A:FCs, X:group/depth-wise convolutions, @ : other convolutions

* Many shapes are not good targets of matrix-matrix units and with moderate op. intensity

10,000 10,000
o o
[} a
1,000 ¢ A e oo *o 1,000 o
A A e o @ o 0 ¢ @ o ©° o
A A ® o o ® o o o o o o
Q] Q]
100 y .: ° : X 100 X i ; :
~ X
10 X X X XX X 10 « y
g o 0 0 :
A0 W 0 A Q O

Weight matrices

oo P oo
e op e

N < operations per activation

Outline

Introduction to deep learning inference at Facebook
Computational characteristics

Optimization experience on current HWs (Intel CPUs)
SW/HW Co-design directions

Optimization Methodology

* Fleet-wide DL inference profiling
* Reduced precision
* Whole graph optimization

Reduced-precision Inference

* Performance challenges in current Intel CPUs

* 8-bit multiplication with 32-bit accumulation instruction
throughput not much higher than fp32 (until VNNI is available)

* Accuracy challenges

* Strict accuracy requirements in data center DL inference

16-bit accumulation for high op. intensity cases

140

=
o O N
o O O

AN
o

Performance (Gop/s)
N (@)
o o

o

OPS/Matrix Element
FC

Measured with 1 core of Intel Xeon E5-2680 v4 with

I8-acc32 for low op. intensity case and i8-acc16 for

Figure credit: Protonu Basu and Daya Khudia

OPS/Matrix Element

Conv

turbo mode off
nigh op. intensity case

* 1.7xin resnet50 and 2.4x in Rosetta (Faster-RCNN-ShuffleNet) over fp32

___ e
x i8-accl6 | X i 149 (X18-accl6 . TR SO
E ¥ E i wi20 gx ----- 7 R S —
+fp32 (MKL) X % 8100 T T
""" : 80 P P
----------------------------------- T — S oo | e o Eoagret
. e () + 4
2 ¥
--------------------------- e . —
------- ;,* £E20 +xF
X
* Lol 1 Lo ! o0 oo A 0 i“‘“” L e
1 10 100 1000 1 10 100 1000

Accuracy improving techniques

resnet50 0.3% top-1 and 0.1% top-5 drop. Similarly small accuracy drops in Faster-RCNN-ShuffleNet,
ResNeXt, ResNeXt3D, ...

Outlier-aware quantization
L2 error minimizing quantization: find a scale and zero_point that minimizes L2 error (similar to Nvidia

ensorRT’s KL divergence minimization)

Fine-grain quantization: per output feature quantization (FC), per output channel quantization (Conv),
per-entry quantization (Embedding)

Quantization-aware training: fake quantization (similar to TF)

Selective quantization: skip layers with high quantization errors (e.g., first Conv layer)
Net-aware quantization: propagation range constraints (e.g., operators followed by ReLU or sigmoid)

Outlier-aware Quantization

Y=X*"W"T=X*(W_1+W_2)"T

W_1(1,3)) = WQ, j) if |W(, j)| < outlier_threshold, else 0
W_2(1,3) = W(,)) if [W(@, j)| >= outlier_threshold, else 0

* W_T1:dense matrix with small values. Can compute with 16-bit accumulation
* W_2:sparse matrix with big values. Compute with 32-bit accumulation

Outline

Introduction to deep learning inference at Facebook

Computational characteristics
Optimization experience on current HWs (Intel CPUs)

SW/HW Co-design directions

DL models are diverse and changing fast

* AlexNet is not interesting to us

* Not all matrix operations have “nice” square matrix shapes

* Video, object detection, multilingual language models demand big on-chip
memory. However, solely relying on SRAM without off-chip memory
interface is risky

* Embedding lookups demand high capacity and bandwidth memory

DL inference in data centers vs. inference at edge
devices

Data Center Edge Devices

Wants to maintain accuracy. Fp16 Trade-off accuracy for energy-

Drecici 'd .
Reduced Precision fallback can be useful efficiency and latency constraints

Should focus on speeding up

inference (exception: embeddings) Should focus on model size

Model Pruning

