Deep Learning Inference in Facebook Data Centers:

Characterization, Performance Optimizations, and Hardware Implications

Jongsoo Park
Facebook AI System SW/HW Co-design Team
Sep-21 2018

Team Introduction

- Al System Co-design
- High performance numerical and architectural SW optimizations,
 HW performance modeling and recommendations through Machine Learning-driven Co-design
- Expertise
 - HPC and parallel algorithms
 - Computer architecture
 - Performance optimization and modeling
 - Numerical linear algebra, ML, and graph analytics

Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

DL Inference in Facebook Data Centers

- Used for core services: personalization and integrity/security
- Diverse data types: images, videos, multi-lingual contents
- Scale to billions of users

Increase of server capacity for DL inference, Xiaodong Wang

DL Application Domains

- 1. Ranking and recommendation: ads, feed, and search
- 2. Computer vision: image classification, object detection, and video understanding
- 3. Language: translation, content understanding

• Interactions among these: powering recommendation (1) with visual (2) and linguistic (3) content understanding

Domain 1: Ranking and Recommendation

- Embedding tables demand
 - High memory capacity (>10s of GBs)
 - High memory bandwidth (low arithmetic intensity)
- HBMs are too small. NVMs are too slow

Figure credit: Maxim Naumov

Domain 2: Computer Vision

- Classification
 - Bigger model + bigger data \rightarrow higher accuracy

Domain 2: Computer Vision

- Classification
 - Bigger model + bigger data -> higher accuracy
- Object detection and video understanding
 - Bigger inputs than classification
 - FLOP-efficient models like ShuffleNet with depth-wise convolutions [2]

- [1] Exploring the limits of weakly supervised pretraining. Mahajan et al.
- [2] Rosetta: understanding text in images and videos with machine learning. Sivakumar et al.

Domain 3: Language Models

- Small batch size for latency constraints
- Attention only models
- Multilingual models

Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

Roofline Model Recap

- Application flop/byte < System flop/byte →
 performance bound by memory BW
- Flop/byte w.r.t. parameters: drives off-chip BW need when parameters off chip and activations on chip
- Flop/byte w.r.t. parameters + activations: drives offchip BW need when activations too big so need to be off chip, or on-chip BW need

Roofline: An Insightful Visual Performance Model for Floatingpoint Programs and Multicore Architectures. Williams et al.

Resource Requirements

Category	Model Types	Model Size (# params)	Max. Live Activations	Op. Intensity (w.r.t. weights)	Op. Intensity (w.r.t. act & weights)
	FCs	1-10M	> 10K	20-200	20-200
Recommendation	Embeddings	>10 Billion	> 10K	1-2	1-2
Computer Vision	ResNeXt101-32x4-48	43-829M	2-29M	avg. 380 Min. 100	Avg. 188 Min. 28
	Faster-RCNN (with ShuffleNet)	6M	13M	Avg. 3.5K Min. 2.5K	Avg. 145 Min. 4
	ResNeXt3D-101	21M	58M	Avg. 22K Min. 2K	Avg. 172 Min. 6
Language	seq2seq	100M-1B	>100K	2-20	2-20

Observation 1: big embedding with low op. intensity

Category	Model Types	Model Size (# params)	Max. Live Activations	Op. Intensity (w.r.t. weights)	Op. Intensity (w.r.t. act & weights)
Recommendation	FCs	1-10M	> 10K	20-200	20-200
	Embeddings	>10 Billion	> 10K	1-2	1-2
Computer Vision	ResNeXt101-32x4-48	43-829M	2-29M	avg. 380 Min. 100	Avg. 188 Min. 28
	Faster-RCNN (with ShuffleNet)	6M	13M	Avg. 3.5K Min. 2.5K	Avg. 145 Min. 4
	ResNeXt3D-101	21M	58M	Avg. 22K Min. 2K	Avg. 172 Min. 6
Language	seq2seq	100M-1B	>100K	2-20	2-20

Interesting challenge for future memory system designs

Observation 2: bigger models and activations

Category	Model Types	Model Size (# params)	Max. Live Activations	Op. Intensity (w.r.t. weights)	Op. Intensity (w.r.t. act & weights)
Decemberdation	FCs	1-10M	> 10K	20-200	20-200
Recommendation	Embeddings	>10 Billion	> 10K	1-2	1-2
Computer Vision	ResNeXt101-32x4- 48	43-829M	2-29M	avg. 380 Min. 100	Avg. 188 Min. 28
	Faster-RCNN (with ShuffleNet)	6M	13M	Avg. 3.5K Min. 2.5K	Avg. 145 Min. 4
	ResNeXt3D-101	21M	58M	Avg. 22K Min. 2K	Avg. 172 Min. 6
Language	seq2seq	100M-1B	>100K	2-20	2-20

• Need large on-chip memory. Otherwise off-chip memory BW bound for small batch.

Observation 3: tall-skinny matrix operations

Category	Model Types	Model Size (# params)	Max. Live Activations	Op. Intensity (w.r.t. weights)	Op. Intensity (w.r.t. act & weights)
Recommendation	FCs	1-10M	> 10K	20-200	20-200
	Embeddings	>10 Billion	> 10K	1-2	1-2
Computer Vision	ResNeXt101-32x4-48	43-829M	2-29M	avg. 380 Min. 100	Avg. 188 Min. 28
	Faster-RCNN (with ShuffleNet)	6M	13M	Avg. 3.5K Min. 2.5K	Avg. 145 Min. 4
	ResNeXt3D-101	21M	58M	Avg. 22K Min. 2K	Avg. 172 Min. 6
Language	seq2seq	100M-1B	>100K	2-20	2-20

- e.g., depth-wise convolution
- Low utilization with big matrix-matrix unit
- Need high on-chip memory BW
- More on next slides

Need for bigger and faster on-chip memory BW

Runtime roofline analysis on a
 hypothetical accelerator with 100 int8
 Top/s. Solid lines: 1 TB/s on-chip BW.
 Dashed lines: 10 TB/s on-chip BW.

Figure credit: Martin Schatz

Fleet-wide Caffe2 operator execution time breakdown

- FC is the most time consuming followed by embedding
- Conv is only 4%
- Tensor manipulation (concat, split, transpose, ...): good graph-level optimization targets

Common matrix shapes

Activation matrices

Weight matrices

- Caffe convention: M-by-K activation matrix * K-by-N weight matrix
- ▲: FCs, X: group/depth-wise convolutions, •: other convolutions
- Many shapes are not good targets of matrix-matrix units and with moderate op. intensity

Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

Optimization Methodology

- Fleet-wide DL inference profiling
- Reduced precision
- Whole graph optimization

Reduced-precision Inference

- Performance challenges in current Intel CPUs
 - 8-bit multiplication with 32-bit accumulation instruction throughput not much higher than fp32 (until VNNI is available)
- Accuracy challenges
 - Strict accuracy requirements in data center DL inference

16-bit accumulation for high op. intensity cases

- Measured with 1 core of Intel Xeon E5-2680 v4 with turbo mode off
- i8-acc32 for low op. intensity case and i8-acc16 for high op. intensity case
- 1.7x in resnet50 and 2.4x in Rosetta (Faster-RCNN-ShuffleNet) over fp32

Accuracy improving techniques

• resnet50 0.3% top-1 and 0.1% top-5 drop. Similarly small accuracy drops in Faster-RCNN-ShuffleNet, ResNeXt, ResNeXt3D, ...

Outlier-aware quantization

- L2 error minimizing quantization: find a scale and zero_point that minimizes L2 error (similar to Nvidia TensorRT's KL divergence minimization)
- Fine-grain quantization: per output feature quantization (FC), per output channel quantization (Conv), per-entry quantization (Embedding)
- Quantization-aware training: fake quantization (similar to TF)
- Selective quantization: skip layers with high quantization errors (e.g., first Conv layer)
- Net-aware quantization: propagation range constraints (e.g., operators followed by ReLU or sigmoid)

Outlier-aware Quantization

$$Y = X * W^T = X * (W_1 + W_2)^T$$

$$W_1(i, j) = W(i, j)$$
 if $|W(i, j)| < outlier_threshold$, else o $W_2(i, j) = W(i, j)$ if $|W(i, j)| >= outlier_threshold$, else o

- W_1: dense matrix with small values. Can compute with 16-bit accumulation
- W_2 : sparse matrix with big values. Compute with 32-bit accumulation

Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

DL models are diverse and changing fast

- AlexNet is not interesting to us
- Not all matrix operations have "nice" square matrix shapes
- Video, object detection, multilingual language models demand big on-chip memory. However, solely relying on SRAM without off-chip memory interface is risky
- Embedding lookups demand high capacity and bandwidth memory

DL inference in data centers vs. inference at edge devices

	Data Center	Edge Devices	
Reduced Precision	Wants to maintain accuracy. Fp16 fallback can be useful	Trade-off accuracy for energy- efficiency and latency constraints	
Model Pruning	Should focus on speeding up inference (exception: embeddings)	Should focus on model size	

