# Deep Learning Inference in Facebook Data Centers:

Characterization, Performance Optimizations, and Hardware Implications

Jongsoo Park
Facebook AI System SW/HW Co-design Team
Sep-21 2018

#### Team Introduction

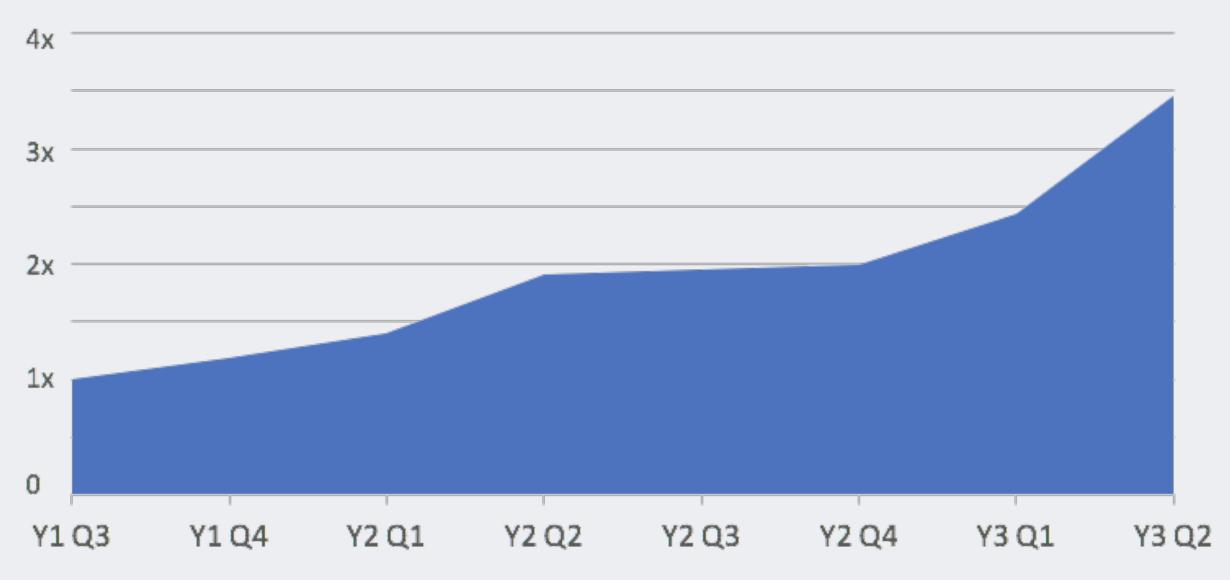
- Al System Co-design
- High performance numerical and architectural SW optimizations,
   HW performance modeling and recommendations through Machine Learning-driven Co-design
- Expertise
  - HPC and parallel algorithms
  - Computer architecture
  - Performance optimization and modeling
  - Numerical linear algebra, ML, and graph analytics

#### Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

#### DL Inference in Facebook Data Centers

- Used for core services: personalization and integrity/security
- Diverse data types: images, videos, multi-lingual contents
- Scale to billions of users



Increase of server capacity for DL inference, Xiaodong Wang

## DL Application Domains

- 1. Ranking and recommendation: ads, feed, and search
- 2. Computer vision: image classification, object detection, and video understanding
- 3. Language: translation, content understanding

• Interactions among these: powering recommendation (1) with visual (2) and linguistic (3) content understanding

## Domain 1: Ranking and Recommendation

- Embedding tables demand
  - High memory capacity (>10s of GBs)
  - High memory bandwidth (low arithmetic intensity)
- HBMs are too small. NVMs are too slow

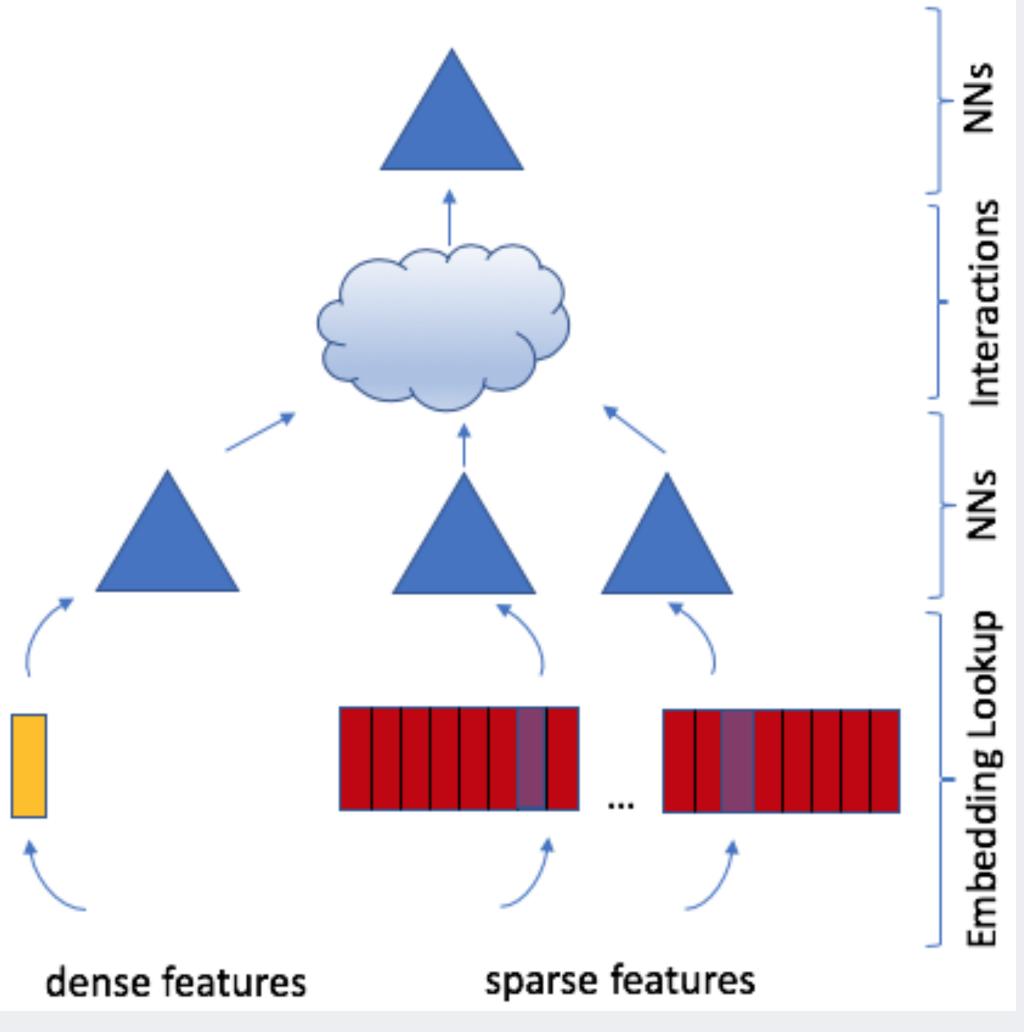
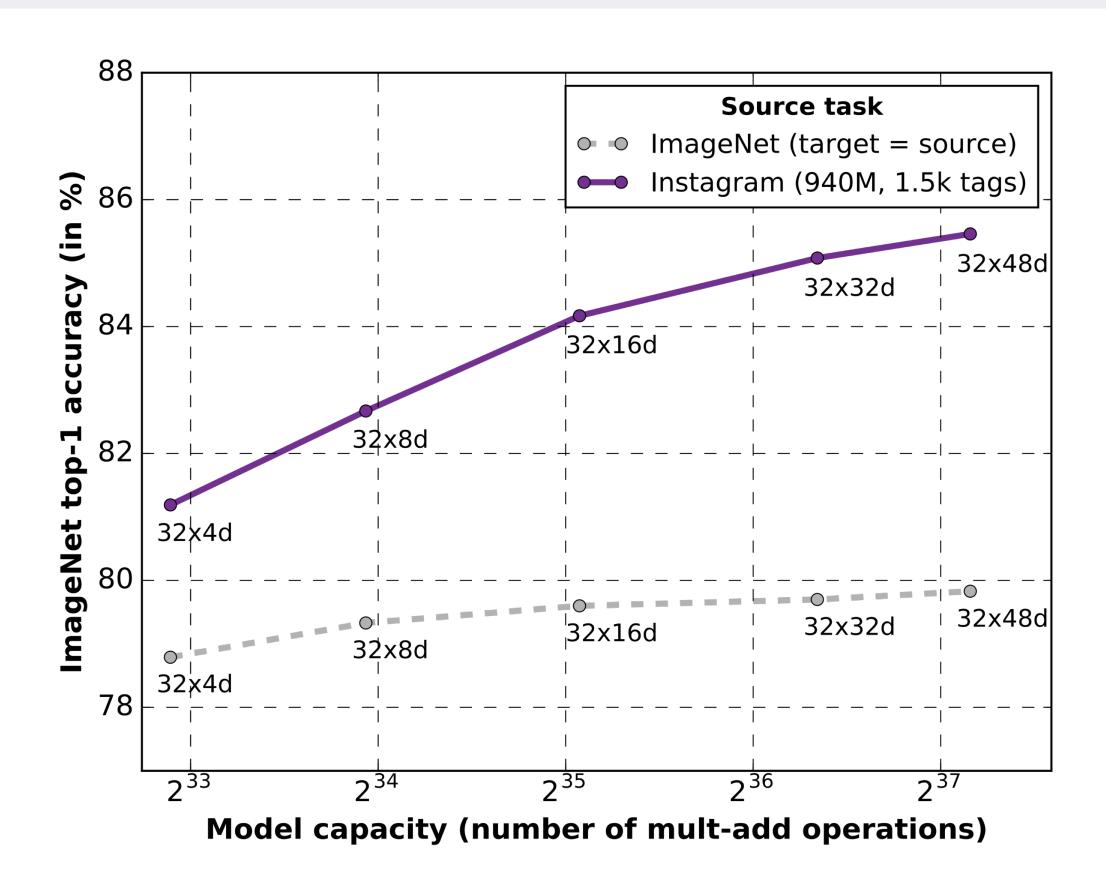


Figure credit: Maxim Naumov

## Domain 2: Computer Vision

- Classification
  - Bigger model + bigger data  $\rightarrow$  higher accuracy



## Domain 2: Computer Vision

- Classification
  - Bigger model + bigger data -> higher accuracy
- Object detection and video understanding
  - Bigger inputs than classification
  - FLOP-efficient models like ShuffleNet with depth-wise convolutions [2]

- [1] Exploring the limits of weakly supervised pretraining. Mahajan et al.
- [2] Rosetta: understanding text in images and videos with machine learning. Sivakumar et al.

## Domain 3: Language Models

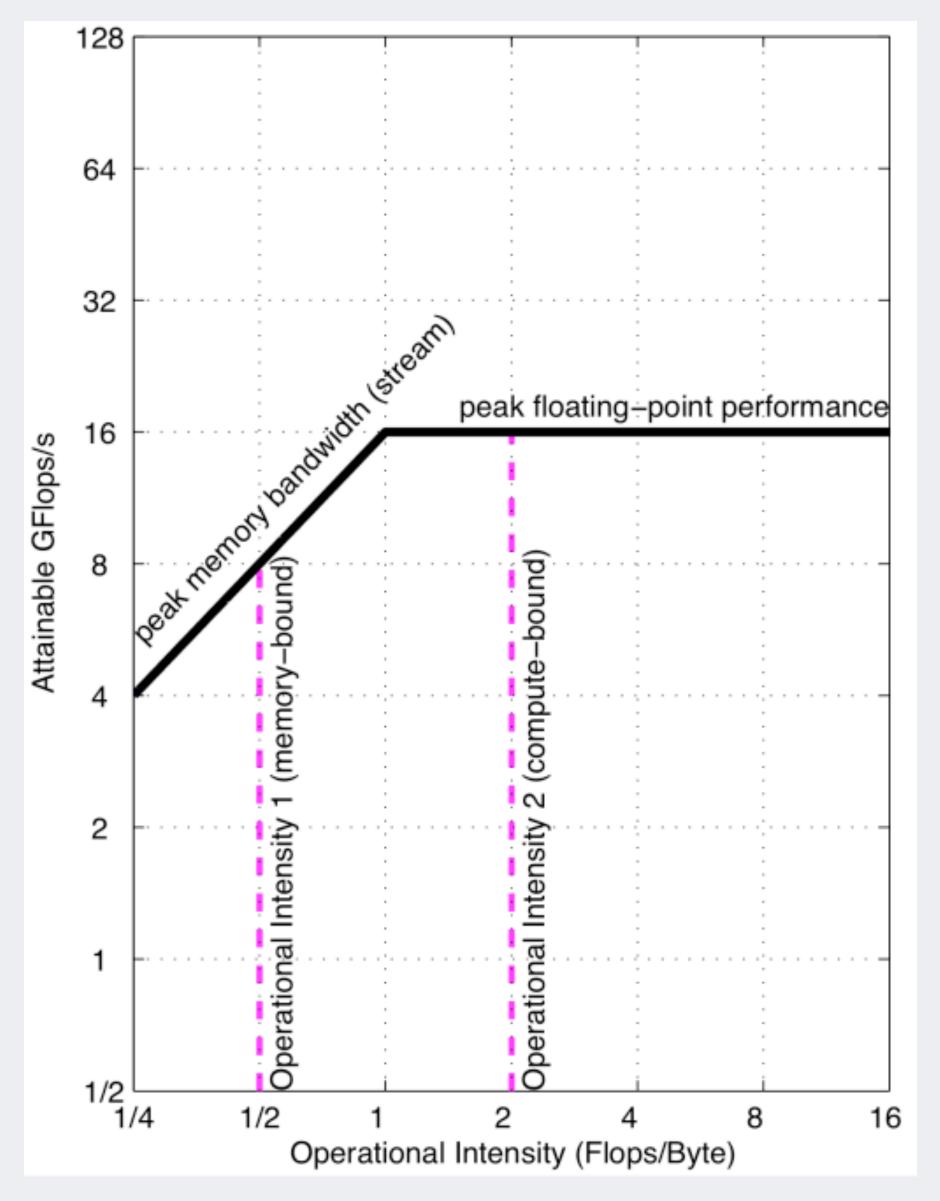
- Small batch size for latency constraints
- Attention only models
- Multilingual models

#### Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

## Roofline Model Recap

- Application flop/byte < System flop/byte →</li>
   performance bound by memory BW
- Flop/byte w.r.t. parameters: drives off-chip BW need when parameters off chip and activations on chip
- Flop/byte w.r.t. parameters + activations: drives offchip BW need when activations too big so need to be off chip, or on-chip BW need



Roofline: An Insightful Visual Performance Model for Floatingpoint Programs and Multicore Architectures. Williams et al.

## Resource Requirements

| Category        | Model Types                   | Model Size (#<br>params) | Max. Live<br>Activations | Op. Intensity<br>(w.r.t. weights) | Op. Intensity<br>(w.r.t. act &<br>weights) |
|-----------------|-------------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------------------------|
|                 | FCs                           | 1-10M                    | > 10K                    | 20-200                            | 20-200                                     |
| Recommendation  | Embeddings                    | >10 Billion              | > 10K                    | 1-2                               | 1-2                                        |
| Computer Vision | ResNeXt101-32x4-48            | 43-829M                  | 2-29M                    | avg. 380<br>Min. 100              | Avg. 188<br>Min. 28                        |
|                 | Faster-RCNN (with ShuffleNet) | 6M                       | 13M                      | Avg. 3.5K<br>Min. 2.5K            | Avg. 145<br>Min. 4                         |
|                 | ResNeXt3D-101                 | 21M                      | 58M                      | Avg. 22K<br>Min. 2K               | Avg. 172<br>Min. 6                         |
| Language        | seq2seq                       | 100M-1B                  | >100K                    | 2-20                              | 2-20                                       |

#### Observation 1: big embedding with low op. intensity

| Category        | Model Types                   | Model Size (#<br>params) | Max. Live<br>Activations | Op. Intensity<br>(w.r.t. weights) | Op. Intensity<br>(w.r.t. act &<br>weights) |
|-----------------|-------------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------------------------|
| Recommendation  | FCs                           | 1-10M                    | > 10K                    | 20-200                            | 20-200                                     |
|                 | Embeddings                    | >10 Billion              | > 10K                    | 1-2                               | 1-2                                        |
| Computer Vision | ResNeXt101-32x4-48            | 43-829M                  | 2-29M                    | avg. 380<br>Min. 100              | Avg. 188<br>Min. 28                        |
|                 | Faster-RCNN (with ShuffleNet) | 6M                       | 13M                      | Avg. 3.5K<br>Min. 2.5K            | Avg. 145<br>Min. 4                         |
|                 | ResNeXt3D-101                 | 21M                      | 58M                      | Avg. 22K<br>Min. 2K               | Avg. 172<br>Min. 6                         |
| Language        | seq2seq                       | 100M-1B                  | >100K                    | 2-20                              | 2-20                                       |

Interesting challenge for future memory system designs

#### Observation 2: bigger models and activations

| Category        | Model Types                   | Model Size (#<br>params) | Max. Live<br>Activations | Op. Intensity<br>(w.r.t. weights) | Op. Intensity<br>(w.r.t. act &<br>weights) |
|-----------------|-------------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------------------------|
| Decemberdation  | FCs                           | 1-10M                    | > 10K                    | 20-200                            | 20-200                                     |
| Recommendation  | Embeddings                    | >10 Billion              | > 10K                    | 1-2                               | 1-2                                        |
| Computer Vision | ResNeXt101-32x4-<br>48        | 43-829M                  | 2-29M                    | avg. 380<br>Min. 100              | Avg. 188<br>Min. 28                        |
|                 | Faster-RCNN (with ShuffleNet) | 6M                       | 13M                      | Avg. 3.5K<br>Min. 2.5K            | Avg. 145<br>Min. 4                         |
|                 | ResNeXt3D-101                 | 21M                      | 58M                      | Avg. 22K<br>Min. 2K               | Avg. 172<br>Min. 6                         |
| Language        | seq2seq                       | 100M-1B                  | >100K                    | 2-20                              | 2-20                                       |

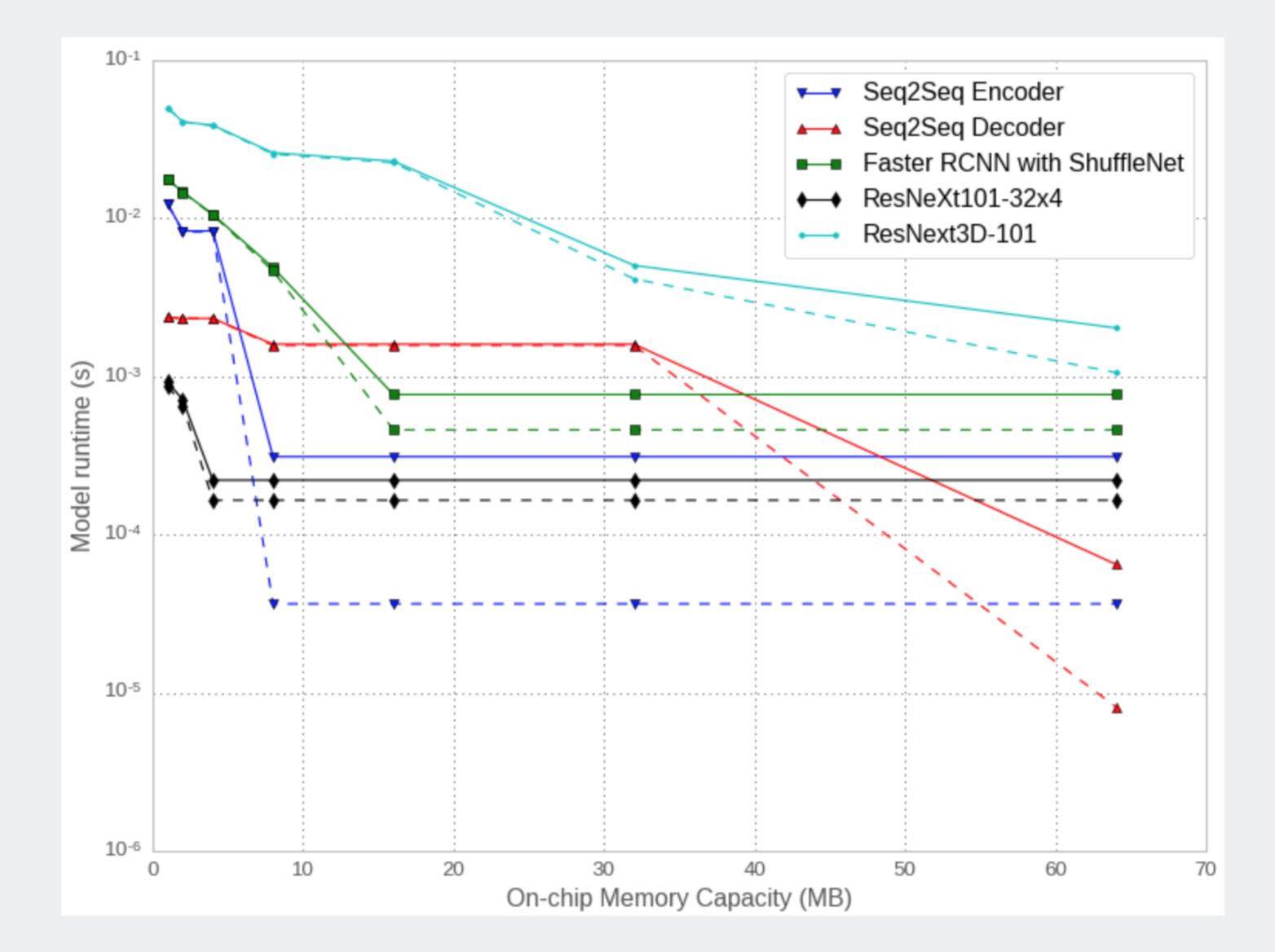
• Need large on-chip memory. Otherwise off-chip memory BW bound for small batch.

### Observation 3: tall-skinny matrix operations

| Category        | Model Types                   | Model Size (#<br>params) | Max. Live<br>Activations | Op. Intensity<br>(w.r.t. weights) | Op. Intensity<br>(w.r.t. act &<br>weights) |
|-----------------|-------------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------------------------|
| Recommendation  | FCs                           | 1-10M                    | > 10K                    | 20-200                            | 20-200                                     |
|                 | Embeddings                    | >10 Billion              | > 10K                    | 1-2                               | 1-2                                        |
| Computer Vision | ResNeXt101-32x4-48            | 43-829M                  | 2-29M                    | avg. 380<br>Min. 100              | Avg. 188<br>Min. 28                        |
|                 | Faster-RCNN (with ShuffleNet) | 6M                       | 13M                      | Avg. 3.5K<br>Min. 2.5K            | Avg. 145<br>Min. 4                         |
|                 | ResNeXt3D-101                 | 21M                      | 58M                      | Avg. 22K<br>Min. 2K               | Avg. 172<br>Min. 6                         |
| Language        | seq2seq                       | 100M-1B                  | >100K                    | 2-20                              | 2-20                                       |

- e.g., depth-wise convolution
- Low utilization with big matrix-matrix unit
- Need high on-chip memory BW
- More on next slides

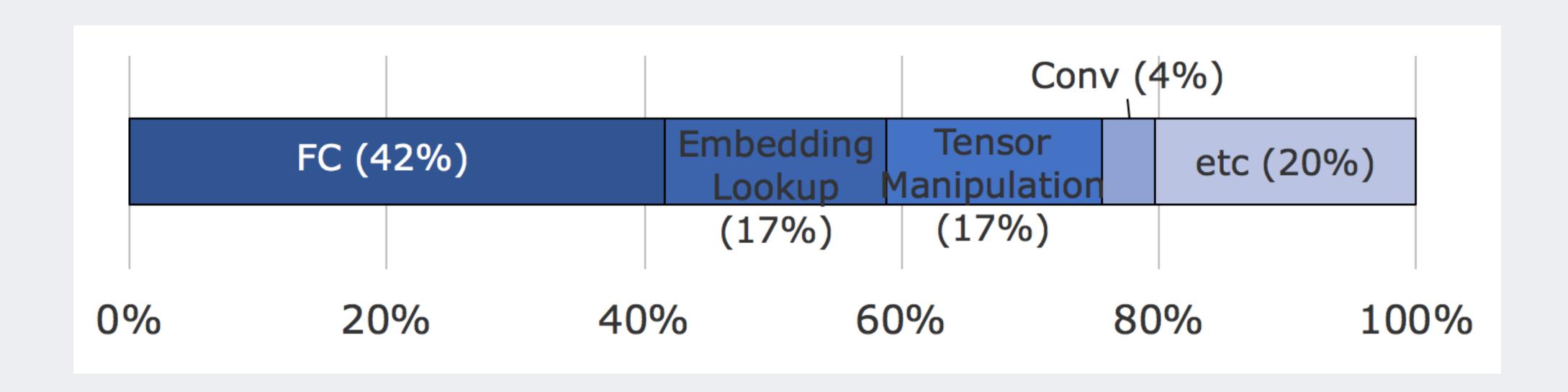
#### Need for bigger and faster on-chip memory BW



Runtime roofline analysis on a
 hypothetical accelerator with 100 int8
 Top/s. Solid lines: 1 TB/s on-chip BW.
 Dashed lines: 10 TB/s on-chip BW.

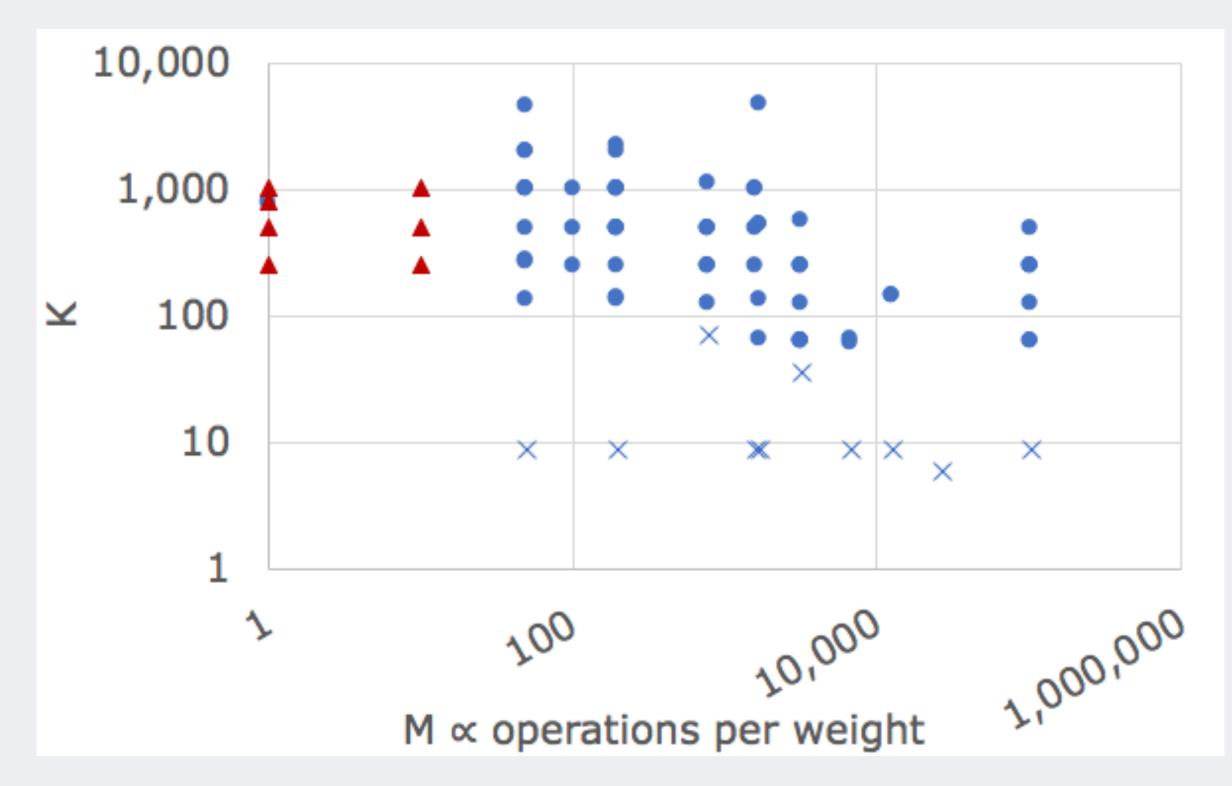
Figure credit: Martin Schatz

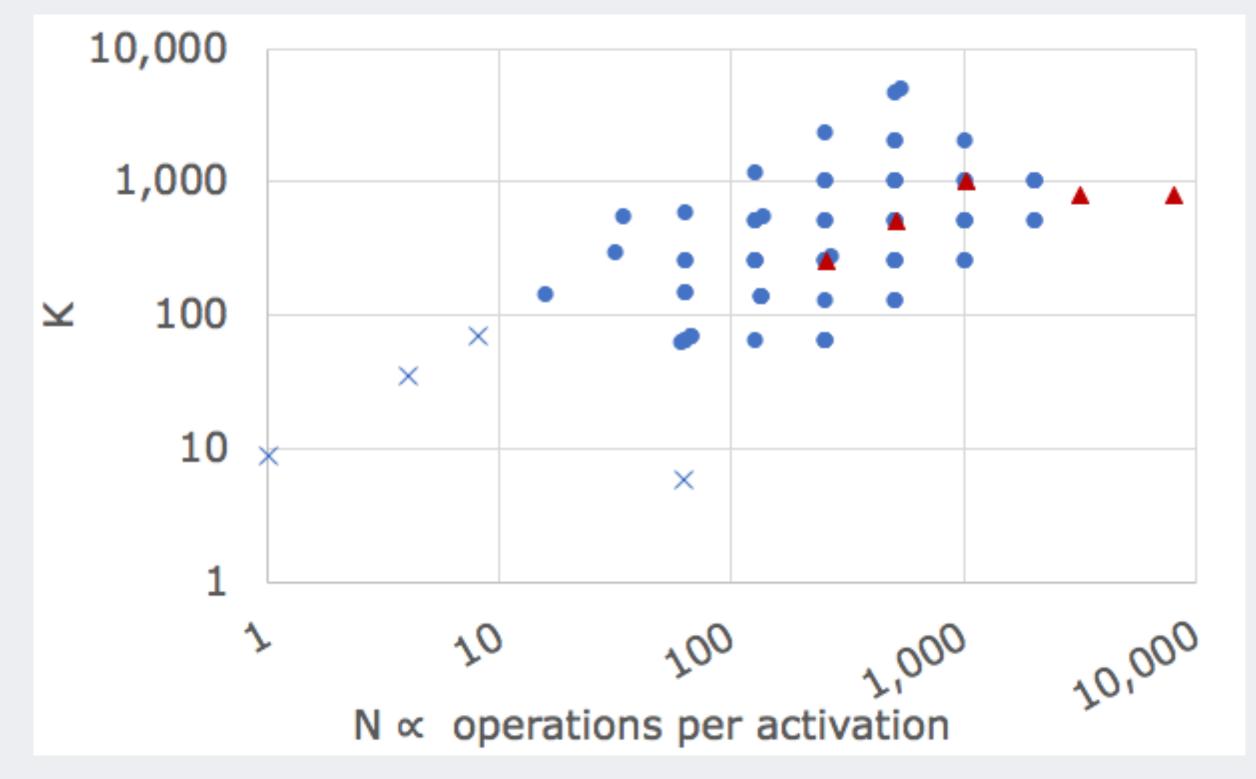
#### Fleet-wide Caffe2 operator execution time breakdown



- FC is the most time consuming followed by embedding
- Conv is only 4%
- Tensor manipulation (concat, split, transpose, ...): good graph-level optimization targets

## Common matrix shapes





**Activation matrices** 

Weight matrices

- Caffe convention: M-by-K activation matrix \* K-by-N weight matrix
- ▲: FCs, X: group/depth-wise convolutions, •: other convolutions
- Many shapes are not good targets of matrix-matrix units and with moderate op. intensity

#### Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

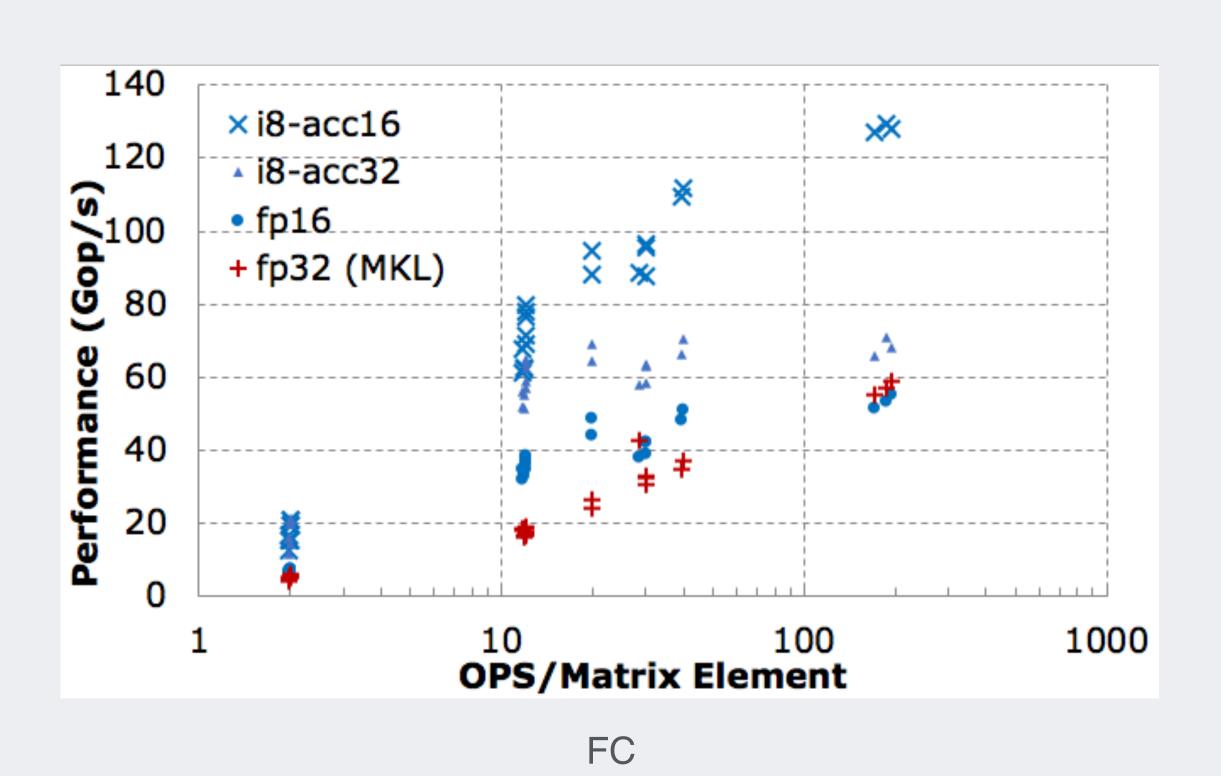
## Optimization Methodology

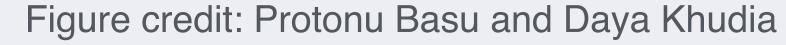
- Fleet-wide DL inference profiling
- Reduced precision
- Whole graph optimization

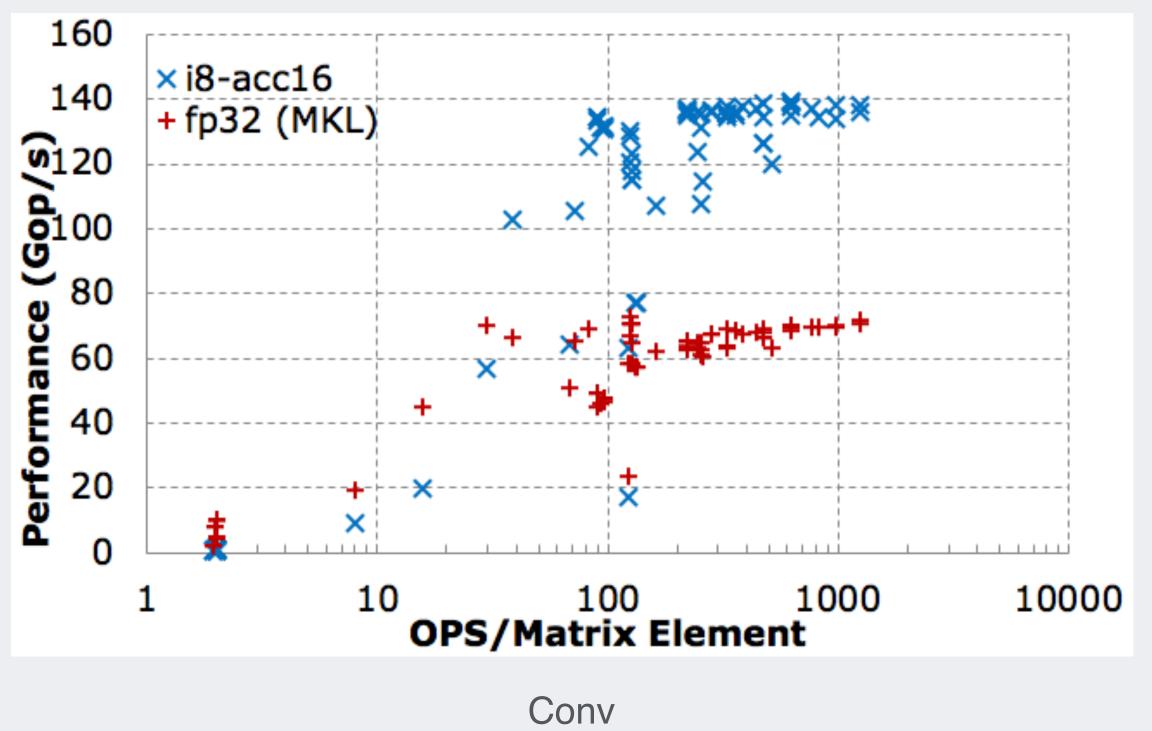
## Reduced-precision Inference

- Performance challenges in current Intel CPUs
  - 8-bit multiplication with 32-bit accumulation instruction throughput not much higher than fp32 (until VNNI is available)
- Accuracy challenges
  - Strict accuracy requirements in data center DL inference

#### 16-bit accumulation for high op. intensity cases







- Measured with 1 core of Intel Xeon E5-2680 v4 with turbo mode off
- i8-acc32 for low op. intensity case and i8-acc16 for high op. intensity case
- 1.7x in resnet50 and 2.4x in Rosetta (Faster-RCNN-ShuffleNet) over fp32

## Accuracy improving techniques

• resnet50 0.3% top-1 and 0.1% top-5 drop. Similarly small accuracy drops in Faster-RCNN-ShuffleNet, ResNeXt, ResNeXt3D, ...

#### Outlier-aware quantization

- L2 error minimizing quantization: find a scale and zero\_point that minimizes L2 error (similar to Nvidia TensorRT's KL divergence minimization)
- Fine-grain quantization: per output feature quantization (FC), per output channel quantization (Conv), per-entry quantization (Embedding)
- Quantization-aware training: fake quantization (similar to TF)
- Selective quantization: skip layers with high quantization errors (e.g., first Conv layer)
- Net-aware quantization: propagation range constraints (e.g., operators followed by ReLU or sigmoid)

### Outlier-aware Quantization

$$Y = X * W^T = X * (W_1 + W_2)^T$$

$$W_1(i, j) = W(i, j)$$
 if  $|W(i, j)| < outlier_threshold$ , else o  $W_2(i, j) = W(i, j)$  if  $|W(i, j)| >= outlier_threshold$ , else o

- W\_1: dense matrix with small values. Can compute with 16-bit accumulation
- W\_2 : sparse matrix with big values. Compute with 32-bit accumulation

#### Outline

- Introduction to deep learning inference at Facebook
- Computational characteristics
- Optimization experience on current HWs (Intel CPUs)
- SW/HW Co-design directions

## DL models are diverse and changing fast

- AlexNet is not interesting to us
- Not all matrix operations have "nice" square matrix shapes
- Video, object detection, multilingual language models demand big on-chip memory. However, solely relying on SRAM without off-chip memory interface is risky
- Embedding lookups demand high capacity and bandwidth memory

## DL inference in data centers vs. inference at edge devices

|                   | Data Center                                                   | Edge Devices                                                         |  |
|-------------------|---------------------------------------------------------------|----------------------------------------------------------------------|--|
| Reduced Precision | Wants to maintain accuracy. Fp16 fallback can be useful       | Trade-off accuracy for energy-<br>efficiency and latency constraints |  |
| Model Pruning     | Should focus on speeding up inference (exception: embeddings) | Should focus on model size                                           |  |

