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Team Introduction
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• High performance numerical and architectural SW optimizations, 

HW performance modeling and recommendations through Machine 
Learning-driven Co-design
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• Performance optimization and modeling
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Outline
• Introduction to deep learning inference at Facebook
• Computational characteristics
• Optimization experience on current HWs (Intel CPUs)
• SW/HW Co-design directions



DL Inference in Facebook Data Centers
• Used for core services: personalization and integrity/security
• Diverse data types: images, videos, multi-lingual contents
• Scale to billions of users

Deep Learning Inference in Data Centers: Characterization, Performance
Optimizations, and Hardware Implications

ASPLOS Submission #385– Confidential Draft – Do Not Distribute!

Abstract
Machine learning (ML), particularly deep learning (DL), is

used in many social network services. Despite recent prolif-
eration of DL accelerators, to provide flexibility, availability
and low latency, many inference workloads are run evaluated
on CPU servers in the datacenter. As DL models grow in
complexity, they take more time to evaluate and thus result in
higher compute and energy demands in the datacenter. This
paper provides detailed characterizations of DL models used
in social network services to illustrate the needs for better co-
design of DL algorithms, numerics, and hardware. We present
computational characteristics of our models, describe high-
performance optimizations targeting existing systems, point
out limitations of these systems, and suggest implications for
future general-purpose/accelerated inference hardware.

1. Introduction
Machine learning (ML) is used in many social network ser-
vices. For instance, deep learning (DL) can be used to enable
better personalization as well as integrity and security of the
system, for example by detecting and preventing the spread of
violent content and hate speech. As the quality of DL models
improves, their use will increase, particularly as people engage
with richer content and multi-language environments.

The high quality visual, speech, and language DL models
must scale to billions of users in social networks [25]. At the
same time, the power consumption in data centers used to run
these models has been rapidly increasing. The collective power
consumption of data centers around the world would be ranked
4th behind only China, US and the EU [4]. A significant frac-
tion of the future increase in data center power consumption
is expected to come from DL, as Figure 1 shows roughly 2⇥
per year increase. The power increase is due to the expanding
range of DL applications and the steady improvement in the
quality of DL models, which often results in the corresponding
increase in compute and memory requirements [2].

In order to tackle this trend, a lot of research has been
done on optimizing computing platforms for DL [1, 18, 25,
34, 47, 48, 58, 59]. One challenge is that DL applications
are fast moving targets for computing platform optimization.
AlexNet [39], which was presented only a few years ago, is
no longer representative of the computation characteristics of
today’s computer vision (CV) DL models used in practice.
This can be a huge risk when designing accelerator hardware
considering its longer time-to-market compared to the appli-
cation software. The rate of change in DL models is so fast

Figure 1: Server capacity for DL inference in data centers.

that hardware optimized for old models can easily become in-
efficient for new models. Even though we had direct access to
the DL models and our optimizations were mostly in software
running on general purpose processors, it has been difficult to
keep up with the rapid innovation in DL. We can only imag-
ine the difficulty hardware designers must face without direct
access to DL models in real applications. Our characterization
suggests the following needs from new DL hardware designs:
1. Powerful vector engines in addition to matrix engines
2. Half-precision floating-point computation when needed
3. Large on-chip memory for small-batch DL inference

Increasing model complexity and lowered latency require-
ments drive the need for powerful vector engines in addition to
matrix engines. As noted earlier, the success of a DL model is
often governed by its accuracy, driving a need to resort to half-
precision floating-point computation when integer operations
are insufficient. To support low-latency with small-batch-size
services and to support recent models with bigger weight and
activation tensors, a large on-chip memory is needed to ensure
we are not bound by off-chip memory bandwidth.

This paper presents the characteristics of DL models impor-
tant to us now (as well as ones we believe will be important in
the future), our experience in optimizing DL applications for
current computing platforms, limitations of the current com-
puting platforms found from our optimization experiences,
and implications for future processor designs. In particular,
we found a gap in characteristics between the models com-
monly studied by the systems community and the models
running in our data centers, which could easily impact the
efficiency of DL platforms being actively designed. Compared
to other studies on DL workloads in data centers [25, 34],
this paper focuses on co-design between algorithms, numer-
ics, and processor architecture based on detailed application
characterization and optimization experience.

The rest of this paper is organized as follows: Section 2
describes our representative DL models, relation to our so-
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DL Application Domains
1. Ranking and recommendation: ads, feed, and search
2. Computer vision: image classification, object detection, 
and video understanding
3. Language: translation, content understanding

• Interactions among these: powering recommendation (1) 
with visual (2) and linguistic (3) content understanding



Domain 1: Ranking and Recommendation
• Embedding tables demand
• High memory capacity (>10s of GBs)
• High memory bandwidth (low arithmetic 

intensity)
• HBMs are too small. NVMs are too slow

cial network services, and detailed computational characteris-
tics. Section 3 presents our experience of optimizing the DL
workloads for current processors, specifically x86 Intel CPUs,
where most of our inference jobs are running currently. Sec-
tion 4 discusses implications on DL hardware designs based
on our workload characterization and optimization experience.
Lastly, we provide an overview of related work in Section 5
and conclude with Section 6.

2. Characterization of DL Inference
This section highlights characteristics of DL inference work-
loads that are of interest in our data centers. Section 2.1
describes DL models used in our social network services and
discusses trends observed in their evolution over time. Sec-
tion 2.2 presents detailed characteristics, focusing on aspects
related to processor architecture design, and Section 2.3 goes
into more details of their common computational kernels.

2.1. Representative Models

We divide inference workloads into three categories. The
first provides personalized feed, ranking or recommendations,
based on previous user interactions. The second and third are
used for content understanding, visual and natural language
content, respectively. The latter infer information used for
powering recommendations, integrity and security such as
detecting objectionable content. They can also be used for
dedicated services like translation.
2.1.1. Ranking and Recommendation
Recommendation systems are one of the most common DL
workloads in data centers with many applications like ads,
feed, and search. Recommendation is usually formulated as an
event-probability prediction problem, where a model predicts
the probability of one or multiple events at the same time. The
items associated with the most likely events are ranked higher
and shown to the user.

For example, let X be a discrete random variable with pos-
sible values {x1, ...,xn} with discrete probability distribution
p. For a single event, the probability can be measured using
the cross-entropy loss, with respect to a desired distribution q,
as H(p,q) =�Ân

k=1 pk · logqk. An ML model using a similar
loss for predicting clicks has been published before [28].

Without going into a comprehensive scientific literature
review, we point out that over time the ML models and recom-
mendation systems have evolved to incorporate neural net-
works (NNs). The latter has progressed from matrix and
tensor-based factorizations [19, 36] to autoencoder and neural
collaborative filtering [27, 40, 56]. Further advances led to
the development of more complex models, such as wide and
deep as well as deep cross neural networks, which have been
successfully applied in practice [14, 26, 68, 74].

These models usually use a combination of signals from
dense and sparse features. The former are represented as a
vector of real values, while the latter are often represented as
indices of an one-hot encoded vector in a high-dimensional

Figure 2: A deep learning recommendation model

space. The sparse features are processed with embedding
look-ups that project sparse indices to a lower dimensional
space. As in Figure 2, the resulting embeddings are combined
with the dense features to produce higher order interactions,
for example using a set of fully connected layers (FCs) or
parameter-less additive and multiplicative mixing [52].

The embedding tables can easily contain billions of param-
eters, while FCs usually have a modest number of parameters.
The size of these models is often bound by the memory of
the system at hand and can easily require a memory capacity
exceeding tens of GBs.

During inference, models often have to predict event-
probabilities for multiple candidates for a single user, usu-
ally within 100s ms time constraint. These properties allow
us to leverage batching to achieve high performance in FCs.
However, the overall model’s execution tends to be memory
bandwidth bound and is dominated by the embedding lookups.
These look-ups perform a large number of mostly random ac-
cesses across table columns, but read an entire column vector
for each such random access.
Future Trends:
1. Model Exploration: recent studies explore explicitly incor-

porating time into the event-probability models [7, 71]. We
believe that such techniques will lead to better models in
the future but require more compute demand.

2. Larger Embeddings: Adding more sparse signals and in-
creasing embedding dimensions tends to improve model
quality. Therefore, we expect even larger embeddings to
be used. This will further increase the pressure on memory
and leads to systems with larger memory capacity, while
putting more focus on distributed training and inference.

2.1.2. Computer Vision
Image Classification: The ResNet architecture [26] is widely
used for image classification, but recently much larger models
based on the ResNeXt architecture [72] have shown state-
of-the-art accuracy for classification over 17K classes with
weakly supervised training [42]. During inference, the images

2

Figure credit: Maxim Naumov



Domain 2: Computer Vision
• Classification
• Bigger model + bigger data à higher accuracy

• Object detection and video understanding
• Bigger inputs than classification
• FLOP-efficient models like ShuffleNet with depth-wise convolutions [2]

[1] Exploring the limits of weakly supervised pretraining. Mahajan et al.
[2] Rosetta: understanding text in images and videos with machine learning. Sivakumar et al.
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Domain 3: Language Models
• Small batch size for latency constraints
• Attention only models
• Multilingual models



Outline
• Introduction to deep learning inference at Facebook
• Computational characteristics
• Optimization experience on current HWs (Intel CPUs)
• SW/HW Co-design directions



Roofline Model Recap
• Application flop/byte < System flop/byte à

performance bound by memory BW

• Flop/byte w.r.t. parameters: drives off-chip BW need 
when parameters off chip and activations on chip

• Flop/byte w.r.t. parameters + activations: drives off-
chip BW need when activations too big so need to be 
off chip, or on-chip BW need
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We can plot a horizontal line showing peak floating-point 

performance of the computer. Obviously, the actual floating-point 

performance of a floating-point kernel can be no higher than the 

horizontal line, since that is a hardware limit. 

How could we plot the peak memory performance? Since X-axis 

is GFlops per byte and the Y-axis is GFlops per second, bytes per 

second—which equals (GFlops/second)/(GFlops/byte)—is just a 

line at a 45-degree angle in this figure. Hence, we can plot a 

second line that gives the maximum floating-point performance 

that the memory system of that computer can support for a given 

operational intensity. This formula drives the two performance 

limits in the graph in Figure 1a: 

Attainable GFlops/sec = Min(Peak Floating Point Performance, 

Peak Memory Bandwidth x Operational Intensity) 

These two lines intersect at the point of peak computational 

performance and peak memory bandwidth. Note that these limits 

are created once per multicore computer, not once per kernel. 

For a given kernel, we can find a point on the X-axis based on its 

operational intensity. If we draw a (pink dashed) vertical line 

through that point, the performance of the kernel on that computer 

must lie somewhere along that line.  

The horizontal and diagonal lines give this bound model its name. 

The Roofline sets an upper bound on performance of a kernel 

depending on its operational intensity. If we think of operational 

intensity as a column that hits the roof, either it hits the flat part of 

the roof, which means performance is compute bound, or it hits 

the slanted part of the roof, which means performance is 

ultimately memory bound. In Figure 1a, a kernel with operational 

intensity 2 is compute bound and a kernel with operational 

intensity 1 is memory bound. Given a Roofline, you can use it 

repeatedly on different kernels, since the Roofline doesn’t vary. 

Note that the ridge point, where the diagonal and horizontal roofs 

meet, offers an insight into the overall performance of the 

computer. The x-coordinate of the ridge point is the minimum 

operational intensity required to achieve maximum performance. 

If the ridge point is far to the right, then only kernels with very 

high operational intensity can achieve the maximum performance 

of that computer. If it is far to the left, then almost any kernel can 

potentially hit the maximum performance. As we shall see 

(Section 6.3.5), the ridge point suggests the level of difficulty for 

programmers and compiler writers to achieve peak performance.  

To illustrate, let’s compare the Opteron X2 with two cores in 

Figure 1a to its successor, the Opteron X4 with four cores. To 

simplify board design, they share the same socket. Hence, they 

have the same DRAM channels and can thus have the same peak 

memory bandwidth, although the prefetching is better in the X4. 

In addition to doubling the number of cores, the X4 also has twice 

the peak floating-point performance per core: X4 cores can issue 

two floating-point SSE2 instructions per clock cycle while X2 

cores can issue two every other clock. As the clock rate is slightly 

faster—2.2 GHz for X2 versus 2.3 GHz for X4—the X4 has 

slightly more than four times the peak floating-point performance 

of the X2 with the same memory bandwidth.  

Figure 1b compares the Roofline models for both systems. As 

expected, the ridge point shifts right from 1.0 in the Opteron X2 to 

4.4 in the Opteron X4. Hence, to see a performance gain in the 

X4, kernels need an operational intensity higher than 1.  

 

Figure 1. Roofline Model for (a) AMD Opteron X2 on left  

and (b) Opteron X2 vs. Opteron X4 on right. 

4. ADDING CEILINGS TO THE MODEL 
The Roofline model gives an upper bound to performance. 

Suppose your program is performing far below its Roofline. What 

optimizations should you perform, and in what order? Another 

advantage of bound and bottleneck analysis is [20]  

“a number of alternatives can be treated together, with a single 

bounding analysis providing useful information about them all.”  

We leverage this insight to add multiple ceilings to the Roofline 

model to guide which optimizations to perform, which are similar 

to the guidelines that loop balance gives the compiler. We can 

think of each of these optimizations as a “performance ceiling” 

below the appropriate Roofline, meaning that you cannot break 

through a ceiling without performing the associated optimization. 

For example, to reduce computational bottlenecks on the Opteron 

X2, two optimizations can help almost any kernel:  

1. Improve instruction level parallelism (ILP) and apply SIMD. 

For superscalar architectures, the highest performance comes 

when fetching, executing, and committing the maximum 

number of instructions per clock cycle. The goal here is to 

improve the code from the compiler to increase ILP. The 

highest performance comes from completely covering the 

functional unit latency. One way is by unrolling loops. For 

the x86-based architectures, another way is using floating-

point SIMD instructions whenever possible, since an SIMD 

instruction operates on pairs of adjacent operands. 

2. Balance floating-point operation mix. The best performance 

requires that a significant fraction of the instruction mix be 

floating-point operations (see Section 7). Peak floating-point 

performance typically also requires an equal number of 

simultaneous floating-point additions and multiplications, 

since many computers have multiply-add instructions or 

because they have an equal number of adders and multipliers.  

 To reduce memory bottlenecks, three optimizations can help: 

3. Restructure loops for unit stride accesses. Optimizing for 

unit stride memory accesses engages hardware prefetching, 

which significantly increases memory bandwidth.  

4. Ensure memory affinity. Most microprocessors today include 

a memory controller on the same chip with the processors. If 

Roofline: An Insightful Visual Performance Model for Floating-
point Programs and Multicore Architectures. Williams et al. 



Resource Requirements
Category Model Types Model Size (# 

params)
Max. Live 

Activations
Op. Intensity 

(w.r.t. weights)
Op. Intensity 
(w.r.t. act & 

weights)

Recommendation
FCs 1-10M > 10K 20-200 20-200

Embeddings >10 Billion > 10K 1-2 1-2

Computer Vision

ResNeXt101-32x4-48 43-829M 2-29M avg. 380
Min. 100

Avg. 188
Min. 28

Faster-RCNN (with 
ShuffleNet) 6M 13M Avg. 3.5K

Min. 2.5K
Avg. 145

Min. 4

ResNeXt3D-101 21M 58M Avg. 22K
Min. 2K

Avg. 172
Min. 6

Language seq2seq 100M-1B >100K 2-20 2-20



Observation 1: big embedding with low op. intensity

Category Model Types Model Size (# 
params)

Max. Live 
Activations

Op. Intensity 
(w.r.t. weights)

Op. Intensity 
(w.r.t. act & 

weights)

Recommendation
FCs 1-10M > 10K 20-200 20-200

Embeddings >10 Billion > 10K 1-2 1-2

Computer Vision

ResNeXt101-32x4-48 43-829M 2-29M avg. 380
Min. 100

Avg. 188
Min. 28

Faster-RCNN (with 
ShuffleNet) 6M 13M Avg. 3.5K

Min. 2.5K
Avg. 145

Min. 4

ResNeXt3D-101 21M 58M Avg. 22K
Min. 2K

Avg. 172
Min. 6

Language seq2seq 100M-1B >100K 2-20 2-20

• Interesting challenge for future memory system designs



Observation 2: bigger models and activations

Category Model Types Model Size (# 
params)

Max. Live 
Activations

Op. Intensity 
(w.r.t. weights)

Op. Intensity 
(w.r.t. act & 

weights)

Recommendation
FCs 1-10M > 10K 20-200 20-200

Embeddings >10 Billion > 10K 1-2 1-2

Computer Vision

ResNeXt101-32x4-
48 43-829M 2-29M avg. 380

Min. 100
Avg. 188
Min. 28

Faster-RCNN (with 
ShuffleNet) 6M 13M Avg. 3.5K

Min. 2.5K
Avg. 145

Min. 4

ResNeXt3D-101 21M 58M Avg. 22K
Min. 2K

Avg. 172
Min. 6

Language seq2seq 100M-1B >100K 2-20 2-20

• Need large on-chip memory. Otherwise off-chip memory BW bound for small batch.



Observation 3: tall-skinny matrix operations

Category Model Types Model Size (# 
params)

Max. Live 
Activations

Op. Intensity 
(w.r.t. weights)

Op. Intensity 
(w.r.t. act & 

weights)

Recommendation
FCs 1-10M > 10K 20-200 20-200

Embeddings >10 Billion > 10K 1-2 1-2

Computer Vision

ResNeXt101-32x4-48 43-829M 2-29M avg. 380
Min. 100

Avg. 188
Min. 28

Faster-RCNN (with 
ShuffleNet) 6M 13M Avg. 3.5K

Min. 2.5K
Avg. 145

Min. 4

ResNeXt3D-101 21M 58M Avg. 22K
Min. 2K

Avg. 172
Min. 6

Language seq2seq 100M-1B >100K 2-20 2-20

• e.g., depth-wise convolution
• Low utilization with big matrix-matrix unit
• Need high on-chip memory BW
• More on next slides



Need for bigger and faster on-chip memory BW

Figure 3: Runtime roofline analysis of different ML models

varying on-chip memory capacity of a hypothetical accelerator

with 100 int8 Top/s compute and 100 GB/s DRAM bandwidth.

The importance of on-chip 1 TB/s (solid) and 10 TB/s (dashed)

bandwidth is showcased under a variety of workloads.

800⇥600 input images and ResNeXt-3D for videos). The
FC layers in recommendation and NMT models use small
batch sizes so performance is bound by off-chip memory band-
width unless parameters can fit on-chip. The batch size can
be increased while maintaining latency with higher compute
throughput of accelerators [34], but only up to a point due to
other application requirements. The number of operations per
weight in CV models are generally high, but the number of
operations per activation is not as high (some layers in the
ShuffleNet and ResNeXt-3D models are as low as 4 or 6).
This is why the performance of ShuffleNet and ResNeXt-3D
varies considerably depending on on-chip memory bandwidth
as shown in Figure 3. Had we only considered their minimum
2K operations per weight, we would expect that 1 TB/s of
on-chip memory is sufficient to saturate the peak 100 Top/s
compute throughput of the hypothetical accelerator. As the
application would be compute bound with 1 TB/s of on-chip
memory bandwidth, we would expect there to be no perfor-
mance difference between 1 TB/s and 10 TB/s.

Third, common primitive operations are not just canoni-
cal multiplications of square matrices, but often involve tall-
and-skinny matrices or vectors. These problem shapes arise
from group/depth-wise convolutions that have recently be-
come popular in CV, and from small batch sizes in Recommen-
dation/NMT models due to their latency constraints. There-
fore, it is desired to have a combination of 1) matrix-matrix
engines to execute the bulk of FLOPs from compute-intensive
models in an energy-efficient manner and 2) powerful enough
vector engines to handle the remaining of operations. More
details are described in the next section.

Figure 4: CPU time breakdown across data centers.

(a) Activation

(b) Weight

Figure 5: Common activation and weight matrix shapes. Here

4: FCs. ⇥: group convolutions with few channels per group

(depth-wise convolution is an extreme case with 1 channel per

group). �: all other operations.

2.3. Computation Kernels

Figure 4 shows the breakdown of operations across all data
centers. We count CPU operations because for inference we
often work with a small batch size in order to meet latency
constraints and therefore GPUs are not widely used (Table 1).
Notice that FCs are the most time consuming operation, fol-
lowed by tensor manipulations and embedding lookups.

Figure 5 shows common matrix shapes encountered in our
DL inference workloads. For activation matrices in convo-
lution layers, we put dimensions of lowered (i.e. im2col’d)
matrices but it doesn’t necessarily mean lowering is used. That
is the reduction dimension is multiplied by the filter size (e.g.,
9 for 3⇥3 filters). In convolution layers, the number of rows
of activation matrices is batch_size⇥H_out⇥W_out, where
H_out⇥W_out is the size of each output channel. We call
this number of rows effective batch size or batch/spatial di-

5

• Runtime roofline analysis on a 
hypothetical accelerator with 100 int8 
Top/s. Solid lines: 1 TB/s on-chip BW. 
Dashed lines: 10 TB/s on-chip BW.

Figure credit: Martin Schatz



Fleet-wide Caffe2 operator execution time breakdown

• FC is the most time consuming followed by embedding
• Conv is only 4%
• Tensor manipulation (concat, split, transpose, …): good graph-level optimization 

targets
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Common matrix shapes
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vector engines to handle the remaining of operations. More
details are described in the next section.
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matrices but it doesn’t necessarily mean lowering is used. That
is the reduction dimension is multiplied by the filter size (e.g.,
9 for 3⇥3 filters). In convolution layers, the number of rows
of activation matrices is batch_size⇥H_out⇥W_out, where
H_out⇥W_out is the size of each output channel. We call
this number of rows effective batch size or batch/spatial di-

5

• Caffe convention: M-by-K activation matrix * K-by-N weight matrix
• ▲: FCs, X : group/depth-wise convolutions, ! : other convolutions
• Many shapes are not good targets of matrix-matrix units and with moderate op. intensity

Activation matrices Weight matrices
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Optimization Methodology
• Fleet-wide DL inference profiling
• Reduced precision
• Whole graph optimization



Reduced-precision Inference
• Performance challenges in current Intel CPUs
• 8 -bit multiplication with 32-bit accumulation instruction 

throughput not much higher than fp32 (until VNNI is available)
• Accuracy challenges
• Strict accuracy requirements in data center DL inference



16 -bit accumulation for high op. intensity cases

needs from optimization efforts at different levels.
Also, extensions to roofline models have been developed

that can incorporate energy and power consumption infor-
mation [13]. This information can be used similarly with
prioritizing optimizations, but has additional benefits of pro-
jecting hotspots for different computations providing us data
that can be used for resource allocation.

3.2. Reduced Precision Inference

The reduced-precision inference has been shown to be effec-
tive at improving compute throughput within a power budget,
especially in mobile platforms. However, applying reduced-
precision inference in data centers is nontrivial. First, DL in-
ference in data centers often has strict accuracy requirements
(usually <1% accuracy loss is accepted).

Mobile platforms have widely adopted CV models such
as ShuffleNet and MobileNet that trade-offs accuracy for sig-
nificant reduction in compute requirements [30, 73]. On the
other hand, DL inference in data centers prefers accurate but
compute intensive models like ResNet [26] and ResNeXt [72].
In particular, when DL inference is related to core services
like feed or integrity/security, the accuracy loss should be very
small.

Also, while general purpose CPUs have high availability in
data-centers, they have not yet adapted to rapidly increasing
compute demand of DL inference and hence lack good support
for high-performance reduced-precision inference. This is ex-
acerbated by the lack of high-performance and high-accuracy
reduced-precision linear algebra libraries for CPUs. Next we
discuss the performance and accuracy challenges, as well as
the linear algebra library interface for DL inference.
3.2.1. Performance Challenges Current generations of x86
processors [31] provide conversion instructions between half-
and single-precision floating point numbers (vcvtph2ps and
vcvtps2ph), but without native half-float (fp16) computation.
They also require a sequence of instructions (vpmaddubsw
+ vpmaddwd + vpadd) to implement 8-bit integer multiplica-
tions with 32-bit accumulation with marginally higher (⇠33%)
compute throughput than that of single-precision floating point
(fp32) [53]. The compute throughput of 8-bit integer multipli-
cations with 16-bit accumulation can be about twice higher
than fp32, but this often results in significant accuracy drops
unless combined with outlier-aware quantization that will be
described shortly. VNNI instructions provide higher through-
put int8 multiplications with 32-bit accumulation but they are
not available in current x86 microarchitectures [69].

As a result, we had to tailor optimization strategies based
on where the performance bottleneck lied. First, when the
performance is memory-bandwidth bound, using fp16 or 8-bit
integer with 32-bit accumulation (i8-acc32) can increase the
arithmetic intensity by up to a factor of 2⇥ and 4⇥, respec-
tively. In this case, we can obtain speedups up to proportion-
ally to the memory bandwidth saving, even when we save
none with respect to the number of instructions. Examples

(a) FC

(b) Conv

Figure 6: Performance of custom reduced-precision GEMM in

Gop/s vs. arithmetic intensity (2NMK/(NK + MK)) for multipli-

cations of M ⇥K and K ⇥N matrices, compared with MKL

GEMM in fp32. Performance is measured with a single thread

running on Intel Xeon E5-2680 v4 with turbo mode off.

are FCs with small batch sizes and group convolutions with
a small number of channels per group (the extreme case be-
ing depth-wise convolution with just one channel per group).
Figure 6(a) plots the performance of our optimized fp16 and
i8-acc32 matrix multiplication (GEMM) compared with Intel
MKL’s fp32 GEMM. Our fp16 and i8-acc32 GEMMs ob-
tain up to 2⇥ and 4⇥ speedups over MKL’s fp32 GEMM,
respectively, for cases with low arithmetic intensity. Apply-
ing our fp16 GEMM, we obtain up to 2⇥ speedup in FC
layers in a recommendation model with 15% overall latency
reduction. Applying our i8-acc32 GEMM, we obtain overall
2.4⇥ speedup in the Faster-RCNN-Shuffle used for our optical
character recognition application, compared to MKL in fp32.

Second, when the performance is bound by the instruction
throughput, we use 8-bit multiplications with 16-bit accumu-
lation and periodic spills to 32-bit accumulators (i8-acc16),
which can provide ⇠2⇥ compute throughput over fp32. To
avoid saturation and accuracy drops, we employ outlier-aware
quantization [48] that separates out weights with bigger mag-
nitude as outliers. Here, we consider a typical threshold for
outliers, where a weight is not an outlier if representable with 7
bits (i.e. the value of weight is between -64 and 63). Then, we
split the weight matrix into two parts, W = Wmain +Woutlier,
where Wmain is in 7 bits and Woutlier contains the residual.
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FC Conv

• Measured with 1 core of Intel Xeon E5-2680 v4 with turbo mode off
• i8-acc32 for low op. intensity case and i8-acc16 for high op. intensity case
• 1.7x in resnet50 and 2.4x in Rosetta (Faster-RCNN-ShuffleNet) over fp32

Figure credit: Protonu Basu and Daya Khudia



Accuracy improving techniques
• resnet50 0.3% top-1 and 0.1% top-5 drop. Similarly small accuracy drops in Faster-RCNN-ShuffleNet, 

ResNeXt, ResNeXt3D, …

• Outlier-aware quantization
• L2 error minimizing quantization: find a scale and zero_point that minimizes L2 error (similar to Nvidia 

TensorRT’s KL divergence minimization)
• Fine-grain quantization: per output feature quantization (FC), per output channel quantization (Conv), 

per-entry quantization (Embedding)
• Quantization-aware training: fake quantization (similar to TF)
• Selective quantization: skip layers with high quantization errors (e.g., first Conv layer)
• Net-aware quantization: propagation range constraints (e.g., operators followed by ReLU or sigmoid)



Outlier-aware Quantization

• W_1 : dense matrix with small values. Can compute with 16 -bit accumulation
• W_2 : sparse matrix with big values. Compute with 32-bit accumulation



Outline
• Introduction to deep learning inference at Facebook
• Computational characteristics
• Optimization experience on current HWs (Intel CPUs)
• SW/HW Co-design directions



DL models are diverse and changing fast
• AlexNet is not interesting to us
• Not all matrix operations have “nice” square matrix shapes
• Video, object detection, multilingual language models demand big on-chip 

memory. However, solely relying on SRAM without off-chip memory 
interface is risky

• Embedding lookups demand high capacity and bandwidth memory



DL inference in data centers vs. inference at edge 
devices

Data Center Edge Devices

Reduced Precision Wants to maintain accuracy. Fp16 
fallback can be useful

Trade-off accuracy for energy-
efficiency and latency constraints

Model Pruning Should focus on speeding up 
inference (exception: embeddings) Should focus on model size
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