Electronics and Energy Applications of 1D and 2D Nanomaterials

Eric Pop

Electrical Engineering (EE) and Precourt Institute for Energy (PIE)
Stanford University

http://poplab.stanford.edu

Acknowledgements

• Alumni:
 – Prof. D. Estrada, Drs. Z.-Y. Ong, A. Liao, J. Wood, Z. Li,
 V. Dorgan, F. Xiong, Z. Li, E. Carrion, S. Islam, K. Grosse
 – 8 M.S. and 10 B.S. theses
• Post-docs:
 – Feng Xiong, Yong Cheol Shin, Eilam Yalon, Miguel Munoz
• Grad students:
 – C. English, F. Lian, S. Deshmukh, S. Boahaichuk
 – M. Mleczko, C. Neumann, I. Datye, M. Chen, A. Gabourie
 – K. Smithe, S. Suryavanshi, N. Wang, R.L. Xu, C. McClellan
• Undergrads:
 – Andrew, Tim, Job, Justin, Yeshar, Erin
• Sponsors:
 – National Science Foundation (NSF), Army Research Office (ARO)
 – Air Force (AFOSR), Intel, STARnet-SONIC, SystemX Alliance
• Collaborators:
 – Z. Bao, K. Goodson, S. Mitra, Y. Nishi, E. Reed, K. Saraswat, H.-S.P. Wong (Stanford), D. Cahill, W. King,
 J. Lyding, J. Rogers, M. Shin (UIUC), M. Rudan (Bologna), C. Jacoboni (Modena), M. Hersam (NWU), I.
 Knezevic (Wisc.), D. Jena (Cornell), D. Ielmini, R. Sordan (Milano), J. Shiono (Tokyo)
What Motivates Us

20 Watts

200 kiloWatts

(conventional Moore’s Law size scaling can get us ~10x)

Electronics Use (and Waste) Much Power

Limited by power & heat since 2005!

energy limits performance from processors, to mobile devices, to data centers

MTF ~ \exp \left(\frac{E_A}{k_B T} \right)
Electronics Use (and Waste) Much Power

Calibrating: 1 GW ~ 1 nuclear power plant
12 GW ~ all electricity used by Argentina

Our Work: Two Sides of the Same Coin

Lower power at its source
(devices, sensors, circuits)

Harvest and manage heat
(energy, thermoelectrics)

fundamental understanding
practical applications
Outline of Talk

- **The SystemX Alliance at Stanford**
 - Center for Integrated Systems (CIS) → SystemX Alliance
 - Industry-academic Alliance to repositioned for 21st century research
 - Become "the" hub for electronic research at Stanford
 - What’s New?
 - Stronger emphasis of top-down, *systems research*
 - Introduce *focus areas* to create coherent thrusts
 - Additional *sponsor benefits* including workshops, E-Seminars

- **Transistors**
 - Heterogeneous integration of beyond-Si materials

- **Data Storage**
 - Approaching limits of phase-change memory

- **Thermal Energy at Nanoscale**
 - Ballistic heat flow and fundamental limits
Value Proposition for Industry Sponsors

- **See everything** that is going on at Stanford
 - Real-time view of all faculty research, including NSF, DARPA, etc. activities
 - Student recruiting, internships, and networking
- **Participation in Focus Area research**
 - Invitation-only attendance to bi-annual workshop & discussion
- **Customized Fellow-Mentor-Advisor (FMA) projects**
 - Company-specific research performed by student & advisor with industry mentor
- **Faculty liaisons, company visits, and weekly E-Seminars**

SystemX Focus Areas

<table>
<thead>
<tr>
<th>Design Productivity</th>
<th>Energy/Power Management Systems</th>
<th>Internet of Everything</th>
<th>Bio Interfaces</th>
<th>Quantum Technologies</th>
<th>Heterogeneous Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horowitz</td>
<td>Rivas</td>
<td>Lee Kahn</td>
<td>Wang</td>
<td>Vuckovic</td>
<td>Pop</td>
</tr>
<tr>
<td>Mitra</td>
<td>Lall</td>
<td>Horowitz</td>
<td>Ellerbee</td>
<td>S. Fan</td>
<td>P. Wong</td>
</tr>
<tr>
<td>Hanrahan</td>
<td>Boyd</td>
<td>Murmann</td>
<td>Kovacs</td>
<td>Mabuchi</td>
<td>Nishi</td>
</tr>
<tr>
<td>Murmann</td>
<td>Gorinevsky</td>
<td>Arbabian</td>
<td>M. P.</td>
<td>B. Lev</td>
<td>Mitr</td>
</tr>
<tr>
<td>Levine</td>
<td>Tse</td>
<td>Howe</td>
<td>Poon</td>
<td>K. Moler</td>
<td>Saraswat</td>
</tr>
<tr>
<td>Olukotun</td>
<td>Pavone</td>
<td>Rivas</td>
<td>P. Wong</td>
<td>Schleier</td>
<td>Plummer</td>
</tr>
<tr>
<td>Aiken</td>
<td>Rajagopal</td>
<td>J. Fan</td>
<td>Howie</td>
<td>Smith</td>
<td>Goodson</td>
</tr>
<tr>
<td>El Gamal</td>
<td>O'Neill</td>
<td>Kenny</td>
<td>Shenyoy</td>
<td>Dione</td>
<td>Senesky</td>
</tr>
<tr>
<td>Arbabian</td>
<td></td>
<td>Boneh</td>
<td>Solgaard</td>
<td>Goldhaber-Gordon</td>
<td>X. Zheng</td>
</tr>
</tbody>
</table>

- Focus areas change dynamically and have finite life-cycle (~3-5 years)
Heterogeneous Integration Focus Area

- Heterogeneous Integration of Everything onto Anything (HIEA)
- Integration of “beyond-Si” platforms for “beyond Moore” applications
 - Monolithic integration of logic, memory, sensors, thermal management, flexible substrates
 - Energy-efficient and brain-inspired design opportunities
 - Autonomous electronics and energy-harvesting opportunities

Outline of Talk

- The SystemX Alliance at Stanford
- Transistors
 - Integration of electronics based on 2D materials
- Data Storage
 - Approaching limits of phase-change memory
- Thermal Energy at Nanoscale
 - Ballistic heat flow and fundamental limits
Transistors Beyond Silicon?

Problem: 20th century transistors “carved” out of 3D materials (Si) → surface roughness restricts mobility, band gap, variability

Solution? 21st century atomically thin materials

- 1D carbon nanotube (CNT)
- 2D TMD (MoS$_2$, WTe$_2$, ZrSe$_2$)
Beyond-Silicon 2D Materials

CVD growth of graphene, BN and MoS$_2$

- **BN**
- **monolayer MoS$_2$**
- **ZrSe$_2$**
- **HfSe$_2$**
- **WTe$_2$ (metallic)**

CVT growth of MoTe$_2$, WTe$_2$, ZrSe$_2$, HfSe$_2$

collab. H.S.-P. Wong, Y. Nishi, I. Fisher

Heterogeneous Integration Progress

Monolithic 3D: low-temperature 3D integration of CNT logic and RRAM memory on CMOS substrate

- **CNFET**
- **RRAM**
- **Silicon**

Wet or Dry Transfer: layer transfer of 2D monolayers onto insulators while preserving the electronic properties

- **Cu-assisted Dry Transfer**
- **PMMA-assisted Wet Transfer**

source: Shulaker, Wong, Mitra (IEDM-2014)

source: K. Smilhe (Pop Lab, 2015)
Band Gaps (E_G) of Several 2D Materials

courtesy of M. Mleczko (Pop Lab)

High-Speed / RF

- Low-E_G but high mobility \rightarrow high-speed and RF applications
- Medium-E_G (0.3 to 1.1 eV) \rightarrow low-power CMOS
- High-E_G \rightarrow power devices

Low-Power CMOS
\sim0.5-1.2 eV

Graphene
0.67 eV
Ge
Si
1.11 eV
GaAs
1.42 eV

Black Phosphorus
0.3 eV (Bulk)
1.1 – 1.9 eV (1L)

Power Devices

- WSe$_2$, WS$_2$, MoS$_2$
 $-1.4 – 1.8$ eV 1L

Layered Insulators

h-BN

Early Work: Graphene Transport Parameters

Lack of transport data* at $T > 300$ K and high-field v_{sat} (>1 V/μm)

High-field v_{sat} measurement is tricky, needs constant field

Also extracted practical electrical and thermal compact models

Graphene Mobility – Where Does it Stand?

mobility = characterizes “ease” of current flow in a material; e.g. $I \propto \eta \mu E$

Today: Graphene-Based Functions and Systems

- Goal: graphene switched analog circuit (SAC). Why?
- Graphene = nanofabrics with high mobility (~10x > Si), flexible…
- SAC tolerates low I_{on}/I_{off} ratio (~5x) of graphene (no band gap)
- Breakthroughs in heterogeneous integration of graphene & CMOS
Graphene Dot Product (GDOT) Nanofunction

- Dot product nanofunction used for image processing, neural networks...
- Takes advantage of native graphene properties, tolerates drawbacks

Idea:

Simulation:

weights encoded by pulse widths ρT

Test Structures

- RF
- TLM
- MOScaps
- MIMcap

... and Implementation
CVD Growth of Monolayer MoS$_2$

Kirby Smithe (Pop Lab)

2” Tube Furnace Schematic

- S source
- Substrate + PTAS
- Mo$_3$
- Ar flow

PTAS: perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt

P = 760 Torr
T = 850 °C

90 nm SiO$_2$/Si (p++)

Continuous, mostly 1L MoS$_2$

Digital Electronics → Monolayer CVD MoS$_2$

- Large-area monolayer CVD MoS$_2$, direct band gap ~1.8 eV
- Wish to scale up devices for low-power digital electronics

Good current achieved (~275 µA/µm) in 80 nm device, but contact resistance remains dominant
Scaled Semiconducting MoS₂ Transistors

Goal: Aggressively scale 2D transistors (e.g. MoS₂) for ultra-low power digital electronics

- Demonstrated how **contacts are limiting** the performance of small MoS₂ transistors
- Built devices with ~40 nm channel length and variable contact sizing ($L_C = 20$ to 100 nm)
- **Smallest MoS₂ transistor with smallest contacts to date** (contacted gate pitch CGP ~ 70 nm, smaller than “22 nm” Si technology from Intel and Samsung)

Metal Contacts to MoS₂ (Clean but Undoped)

- Contacting 2D materials is **difficult**
- Cleaner Au deposition (~10^{-9} torr) leads to improved contact resistance
 - $R_C \approx 740 \, \Omega \cdot \mu m$ and $\rho_c = 4 \times 10^{-7} \, \Omega \cdot \text{cm}^2$

2D Contacts to 2D Transistors

- WTe₂ (2D metal) contacts to WSe₂ (semic.)
- Residue-free transfer process
- 2x improvement over Ag contacts ("best known")
- Observed current saturation

Summary of Challenges in 2D Devices

Material Quality:

Contact Resistance (R_c):

Interfaces:

+Variability!

Outline of Talk

- The SystemX Alliance at Stanford
- Transistors
 - Integration of electronics based on 2D materials
- Data Storage
 - Approaching limits of phase-change memory
- Thermal Energy at Nanoscale
 - Ballistic heat flow and fundamental limits

Phase-Change Memory (PCM) Materials

- Chalcogenide compound: Ge$_2$Sb$_2$Te$_5$ (GST)
- Used in RW-DVDs
- Crystalline vs. amorphous: fast phase change (~1 ns)
- Large change in resistance (>100x)
- Promising candidate for memory, BUT... high programming current (~0.1 mA at IBM, Intel, Samsung)

References:
- Chen and Pop IEEE-TED (2009)
Phase-Change Memory with CNT Electrodes

- Key idea: CNTs are smallest possible electrodes (1-2 nm diameter)
- Use CNT to contact sub-10 nm bits of phase-change material
- Switching at ~100x lower power than conventional PCM!

Self-Aligned Nanotube-Nanowire Devices

- "Marshmallow" memory bit optimized for thermal confinement
- PCM nanowire self-aligned with CNT electrodes
- Excellent \(R_{\text{OFF}} / R_{\text{ON}} \) ratio (> 1000) approaches intrinsic GST limits

We Can Also Use Graphene Electrodes

- Graphene “edge” electrode enables sub-10 µA I_{reset}
- Heterogeneous integration challenges

Where These Results Fit In

- These devices are highly scalable with electrode and bit size
- Lowest power <1 µW, energy <1 fJ/bit (with ~1 ns pulse)
- Have not hit fundamental limits yet (~10-100x lower… 1.2 aJ/nm³)∗

Outline of Talk

- The SystemX Alliance at Stanford
- Transistors
 - Integration of electronics based on 2D materials
- Data Storage
 - Approaching limits of phase-change memory
- **Thermal Energy at Nanoscale**
 - Ballistic heat flow and fundamental limits

2D Material Thermal Properties

- **Large in-plane** thermal conductivity of graphene, BN (>500 W/m/K)
- **Ultra-low cross-plane** thermal conductivity of layered WSe₂ (<0.1 W/m/K)
 - Lower than plastics and comparable to air
- Huge thermal anisotropy in all layered 2D materials (>10-100x)
- MRS Bulletin review with AFRL:

- **Large thermopower** in TMDs (S ~ 0.5 mV/K) → Thermoelectrics?

\[ZT = \frac{S^2 \sigma T}{k} \]
Thermal Conductivity (κ) of 2D Materials

- Flexural phonon modes play important role in 2D materials
- **Anisotropy**: κ_\parallel from ~6 Wm$^{-1}$K$^{-1}$ (WTe$_2$) to ~2000 Wm$^{-1}$K$^{-1}$ (graphene)
 - Cross-plane κ_\perp is typically very small, e.g. 1 to 6 Wm$^{-1}$K$^{-1}$

Heat (and Current) Flow in Nanoscale Samples

- Macroscale, R is additive: $1 + 1 = 2$
- **Nanoscale**, R is quantized: $1 + 1 = 1$
 - Occurs when system size is comparable to electron or phonon (heat) wavelengths and mean free path (10-100 nm)
 - Both electrical and thermal resistance can be **quasi-ballistic**
Heat Flow in Nanoscale Graphene

Bulk thermal properties do not apply at <1 µm!
Thermal conductivity $k(T) = f(W,L)$ even at room T
- ~35% (quasi-)ballistic heat flow in short devices ($\lambda \sim 100$ nm)
- Strong edge scattering in narrow devices

Looking Ahead: Future Opportunities

collab: E. Reed, K. Goodson, K. Saraswat, H.-S.P. Wong, Y. Cui

Could we:
- Exploit anisotropy for routing heat? (thermal diode)
- Separate thermal and electrical flow? (thermal transistor)
- Design electronics with built-in thermoelectric cooling?
- Achieve transparent heat spreaders and flexible thermoelectrics?
Looking Ahead: Future Opportunities

collab: E. Reed, K. Goodson, K. Saraswat, H.-S.P. Wong, Y. Cui

Could we:

– Exploit anisotropy for routing heat? (thermal diode)
– Separate thermal and electrical flow? (thermal transistor)
– Design electronics with built-in thermoelectric cooling?
– Achieve transparent heat spreaders and flexible thermoelectrics?

Summary

- Moore’s Law ~10x \(\rightarrow\) slowing down
- Energy scaling & harvesting ~10^4x \(\rightarrow\) exciting

- Opportunity for convergence of:
 - Novel nanomaterials
 - Low power devices
 - Anisotropy, ballistic, thermoelectric

- Understand fundamental limits
- Future opportunities

http://poplab.stanford.edu
epop@stanford.edu