Solar Frontier CIS module

November, 2011
Greg Ashley
About Solar Frontier

- 100% subsidiary of Showa Shell Sekiyu, with 110 years experience in energy
- 30+ years experience in solar
- 1,000+ employees
- Offices in Tokyo, Munich, Santa Clara
- 2010 80 MW production rising to 980 MW from 2011
Solar Frontier History

1974
- Oil crisis sparks joint solar project with Japanese government

1978
- Showa Shell starts PV R&D
- Shell Solar launches R&D

1981
- Technical partnership with Arco Solar

1983
- Started c-Si production

1986
- Co-founded JPEA

1987
- 100 MW production at 1st plant begins
- Showa Shell launched

1988
- Showa Arco Solar

1989
- Showa Arco Solar

1990
- Showa Arco Solar renamed Showa Solar Energy

1993
- Start CIS research funded by NEDO

2003
- Showa Shell Solar

2004
- Shell Solar Japan

2005
- Production at 2nd plant begins; Atsugi R&D Center opens

2006
- Commercial production in Miyazaki Plant 1

2007
- Commitment to CIS production

2010
- New Global Name Solar Frontier

2011
- 1GW Scale launched

© Solar Frontier K.K.
New Factory Opened in February

Full Scale Production started in July, 2011
Solar Frontier's CIS modules do not contain cadmium or lead.
What is CIS?

CIS is a thin-film compound-semiconductor PV consisting of three major elements:

Cu Copper

In Indium

Se Selenium

Sometimes called “ClGS” since portions of *In* are replaced by *Ga*

Crystal structure of CIS (Chalcopyrite structure)

* Partially Ga
** Partially S
CIS Market Share

2009
- Standard Crystalline Si, 8020, 75%
- CdTe, 1019, 10%
- Super Monocrystalline, 653, 6%
- CdTe, 1438, 6%
- CIGS, 166, 2%
- Amorphous Si/Thin film Si, 796, 7%

2010
- Standard Crystalline Si, 19768, 83%
- CdTe, 1438, 6%
- CIGS, 426, 2%
- Super Monocrystalline, 920, 4%
- Amorphous Si/Thin film Si, 1349, 5%

Technology Growth 2009-2010

<table>
<thead>
<tr>
<th>Technology</th>
<th>2009</th>
<th>2010</th>
<th>2010/2009 Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Crystalline Si</td>
<td>8020</td>
<td>19768</td>
<td>246%</td>
</tr>
<tr>
<td>Super Monocrystalline</td>
<td>653</td>
<td>920</td>
<td>141%</td>
</tr>
<tr>
<td>CdTe</td>
<td>1019</td>
<td>1438</td>
<td>141%</td>
</tr>
<tr>
<td>CIGS</td>
<td>166</td>
<td>426</td>
<td>257%</td>
</tr>
<tr>
<td>Amorphous Si/Thin film Si</td>
<td>796</td>
<td>1349</td>
<td>169%</td>
</tr>
<tr>
<td>Total</td>
<td>10654</td>
<td>23901</td>
<td>224%</td>
</tr>
</tbody>
</table>

Source: GTM Research 2010/2011
General View of “Thin Film”

- **Low efficiency:**
 - Commercially available CIS modules have an efficiency over 13% and on track to be greater than 14% (~ c-Si)

- **Thin Film = Frameless:**
 - CIS modules have framed and frameless types available.

- **Polarity Sensitive (Negative grounding required):**
 - Negative grounding is required only for superstrate structure (CdTe, a-Si) where TCO is deposited on cover glass.
 - CIS is not polarity sensitive (substrate structure)

- **Initial degradation (LID):**
 - CIS does not have initial LID as a-Si. On the contrary, CIS has initial output improvement (+5-10%) by light soaking effect.

CIS (or CIGS) is not the same as CdTe or a-Si.
CIS is Thin Film Efficiency Leader

Best Research-Cell Efficiencies

<table>
<thead>
<tr>
<th>Company</th>
<th>Area</th>
<th>Efficiency</th>
<th>Announced</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1m²</td>
<td>15.7%</td>
<td>Dec. 2010</td>
</tr>
<tr>
<td>B</td>
<td>0.09m²</td>
<td>17.2%</td>
<td>Mar. 2011</td>
</tr>
<tr>
<td>C</td>
<td>0.754m²</td>
<td>14.7%</td>
<td>Jun. 2011</td>
</tr>
</tbody>
</table>

Source: NREL (National Renewable Energy Laboratory)
World Record Efficiency

- Module efficiency of 17.20% achieved at the Atsugi Research Center on 30 cm X 30 cm module
- Highest thin-film module efficiency in the world

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency (%)</td>
<td>17.20</td>
</tr>
<tr>
<td>Voc (cell/ V)</td>
<td>0.693</td>
</tr>
<tr>
<td>Jsc (mA/ cm²)</td>
<td>34.60</td>
</tr>
<tr>
<td>Fill Factor</td>
<td>0.716</td>
</tr>
<tr>
<td>Area (cm²)</td>
<td>808</td>
</tr>
</tbody>
</table>

Efficiency: 17.20%

Voc: 693 mV

Jsc: 34.6 mA/cm²

FF: 0.716

Aperture area: 808 cm²

With ARC

30 x 30 cm²-sized submodule
SF155

Dimensions: 49.5 x 38.5 x 1.4 inch
(1,257 x 977 x 35 mm)
Pmax: 155 W
PTC: 140.4 W
Efficiency: 12.6%
Frame: Anodized Aluminum Alloy
1. Proven Technology for Durability
 - Cover glass and backsheet
 - Aluminum frame (less risk of glass damage, mounting flexibility)
 - Wind/Temp/Humidity environmental durability

2. Not Polarity sensitive

Superstrate type (a-Si, CdTe)

- Superstrate glass
- TCO
- a-Si or CdTe
- Encapsulant
- Backside cover (glass)
No Initial LID (Light Induced Degradation)

- CIS output improves after installation due to Light Soaking effect
- The improvement usually ranges between 5-10%.

Source: AIST=(National Institute of) Advanced Industrial Science and Technology, Mr. Otani, 6th Annual Symposium of Research Center for Photovoltaics, Aug 8-9, 2010, Tsukuba, Japan. Using SPI-SUN simulator 1116N
Other Benefits

High performance ratio

- Light Soaking Effect, Broader Spectra Response and Temperature Coefficient increase Performance Ratio

NOTE: Performance ratio PR (%)
Performance ratio means “the relationship between actual yield and target yield”

\[
\text{Performance ratio PR (\%)} = \frac{\text{Actual output from installed capacity (kWh)}}{\text{Installed Capacity (kW) x } \frac{\text{Actual Radiation (kWh/m}^2\text{)}}{\text{1 sun (1kW/m}^2\text{)}}}
\]

Ecological

- Non-toxic (contains no Cd and uses Pb-free solder)
- Reusable packaging and reduced on-site waste
- Lower overall energy consumption in the manufacturing process (less than 1 year energy payback time)
Thin Film Performs Best

Figure E-11: Simulated Operating Performance by PV Technology and Location

Annual Array Gross DC KWh Output per KW Nameplate Capacity

- Phoenix
- Sacramento
- New York
- Seattle

Monocrystalline Si, Multicrystalline Si, Super Monocrystalline Si, Amorphous Si, CdTe, CIGS

Source: NREL Solar Advisory Model, GTM Research

March 18, 2010 / Shyam Mehta Thin Film 2010: Market Outlook to 2015 Executive Summary
Comparison between CIS and c-Si

Array

Atsugi Research Center
1/7/2009~31/10/2010

CIS: 2.25 kW
Poly-Si: 4.20 kW
Mono-Si: 2.10 kW
20° (South East) Tilt: 20°
Inverter Eff. 94.5%

Output (kWh/kWp)

(kWh/kWp)

Line graph: Performance ratio
Bar graph: amount of power generated (kWh/kWp)

PR(%)
Performance Comparison between CIS and CdTe

Array
- Site: Atsugi Research Center
- Data period: February 2011~June 2011
- CIS: 3.12 kW CdTe: 3.6 kW
- 0° (South) Tilt: 20°
- Inverter Eff. 94.5%

Module type
- CIS (Solar Frontier) SF-130 (130W)
- CdTe (75W)

Feb, 2011~ June, 2011

Total Irradiation: 630 kW/m²

PR (%)

96.1% 89.9%

CIS

92.0% 86.6%

CdTe

DCPR

ACPR
Effect of Efficiency

Module Price to keep same kWh cost (14.4% is 100%)

Assumption: 5MW ground mount, fixed BOS $0.75/Wp and area dependent BOS $1.33/Wp
If the module efficiency is only variable (same physical size, same performance ratio etc.)
Importance of Performance Ratio

Module Price to keep same kWh cost (c-Si price is 100%)

- 4.76MW CIS system delivers the same kWh as 5MW c-Si System

Relative Module Price (per Wp) vs Module Efficiency

- +5% PR (+5% kWh)

- c-Si Typical

- 4.76MW CIS system delivers the same kWh as 5MW c-Si System
Actual Data from Arizona

- 12month Total (4/1/2010-3/1/2011) CIS produce over 15% .

<table>
<thead>
<tr>
<th>kWp</th>
<th>p-Si (13.44kW)</th>
<th>p-Si (6.4kW)</th>
<th>CIS (9.36kW)</th>
<th>Irradiation (kWh/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/kWp</td>
<td>1727.6</td>
<td>1745.8</td>
<td>2018.1</td>
<td>2175.1</td>
</tr>
<tr>
<td>DC-PR</td>
<td>79.4</td>
<td>80.8</td>
<td>93.1</td>
<td></td>
</tr>
</tbody>
</table>
Shadow Tolerance

- Under partially shaded conditions, the unique patterning of CIS modules keeps the drop of output to a minimum.

![CIS and c-Si Shadow Tolerance Diagram](image)

- There is a partial loss of output but the overall effect is minimum for CIS.
- The module’s output drops significantly under partial shadow for c-Si.

The data presented in this document is the proprietary information of Solar Frontier K.K. and is intended for discussion purposes only. Solar Frontier does not intend to warranty any data beyond the performance specifications of CIS modules as indicated in their respective specification datasheets.

© Solar Frontier K.K.
Energy Payback Time (EPT): the time required for a module to generate the amount of energy spent in its production.

- CIS modules have a faster EPT than conventional silicon.

Source: New Energy and Industrial Technology Development Organization (NEDO)

© Solar Frontier K.K.
Ground mount and rooftop systems

- Kolitzheim, Germany (550 kWp)
- Schwabach, Germany (385 kWp)
- Coalinga, California (1.2 MWp)
- Nissan Motors Headquarters, Japan (40 kWp)
Rooftop Systems

Commercial rooftop, Japan

Commercial rooftop, Italy

Residential rooftop, Germany

Residential rooftop, Australia
Selected Reference Cases

Gunkul Megawatt Project, Thailand

<table>
<thead>
<tr>
<th>Date onstream</th>
<th>January 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>System capacity</td>
<td>3.3 MWp</td>
</tr>
<tr>
<td>Panel type</td>
<td>85 W</td>
</tr>
<tr>
<td>No. of panels</td>
<td>38,688</td>
</tr>
<tr>
<td>Panel angle & orientation</td>
<td>15°, South 0°</td>
</tr>
<tr>
<td>Output Jan. Mar. 2011</td>
<td>1,334,260 kWh</td>
</tr>
<tr>
<td>Estimated CO₂ reduction</td>
<td>715 tonnes</td>
</tr>
</tbody>
</table>

North Park Project, Saudi Arabia

<table>
<thead>
<tr>
<th>Date onstream</th>
<th>End 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>System capacity</td>
<td>10 MWp</td>
</tr>
<tr>
<td>Panel type</td>
<td>various</td>
</tr>
<tr>
<td>No. of panels</td>
<td>126,000</td>
</tr>
<tr>
<td>Panel angle & orientation</td>
<td>5°, various</td>
</tr>
<tr>
<td>Estimated output</td>
<td>15,000,000 kWh/yr</td>
</tr>
<tr>
<td>Estimated CO₂ reduction</td>
<td>11,000 tonnes/yr</td>
</tr>
</tbody>
</table>

Almeria Megawatt Project, Spain

<table>
<thead>
<tr>
<th>Date onstream</th>
<th>February 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>System capacity</td>
<td>1 MW</td>
</tr>
<tr>
<td>Panel type</td>
<td>85 W</td>
</tr>
<tr>
<td>No. of panels</td>
<td>11,850</td>
</tr>
<tr>
<td>Panel angle & orientation</td>
<td>25°, South 0°</td>
</tr>
<tr>
<td>Estimated output</td>
<td>1,356,231 kWh/yr</td>
</tr>
<tr>
<td>Estimated CO₂ reduction</td>
<td>529 tonnes</td>
</tr>
</tbody>
</table>

Yukigunigata Megasolar, Niigata, Japan

<table>
<thead>
<tr>
<th>Date onstream</th>
<th>September 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>System capacity</td>
<td>1 MW</td>
</tr>
<tr>
<td>Panel type</td>
<td>80 W</td>
</tr>
<tr>
<td>No. of panels</td>
<td>12,528</td>
</tr>
<tr>
<td>Panel angle & orientation</td>
<td>20° & 30°, South 0°</td>
</tr>
<tr>
<td>Output Sep.-Nov. 2010</td>
<td>376,586 kWh</td>
</tr>
<tr>
<td>CO₂ reduction</td>
<td>169 tonnes</td>
</tr>
</tbody>
</table>
Thank You!