Innovating For The Future - Ultra Low Power Electronics in the Next Decade

Ajith Amerasekera
Texas Instruments Inc.
Dallas, USA
May 2011

SSCS Distinguished Lecture
OUTLINE

• Innovation
• Roadmap for the Next Decade
• What Do We Need?
• Next Steps in Low Power Electronics
• Key Challenges
• Conclusion
INNOVATION
What is Innovation?

– Innovation is defined as the successful implementation of creative ideas within an organization.
– All innovation begins with creative ideas
– But creativity by individuals and teams is a starting point for innovation; the successful implementation or proof of concept is what makes innovation.

• Some general principles:
 • *Anticipate* and *exploit* early information through 'front-loaded' innovation processes
 • *Experiment* frequently but do not overload the organization
 • *Integrate* new and traditional technologies to unlock performance
 • Organize for *rapid* experimentation
 • *Fail* early and often but avoid 'mistakes'
 • Manage projects as *experiments* => prove/disprove solutions.
Looking for New Things

- Research is about looking at the unknown

Increasing Risk

- Execution: Minimum Unknowns
- Development: Some Unknowns
- Research: Many Unknowns

- Research projects could have return on investment in very short timeframe
 - Not limited to long-term multi-year projects
 - Depends on level of effort required to resolve the unknowns.
Types of Innovation
(from Christensen, 1997)

• Sustaining
 – Revolutionary or discontinuous
 • An innovation that creates a new market by allowing customers to solve a problem in a radically new way. (E.g., the automobile)
 – Evolutionary
 • An innovation that improves a product in an existing market in ways that customers are expecting. E.g. fuel injection, high efficiency car engines

• Disruptive
 – An innovation that creates a new (and sometimes unexpected) market by applying a different set of values (e.g. lower price); E.g. Flash drives for computer storage.
Innovating for the Future

• The past is littered with wonderful innovations that were too early or too expensive at the time.
 – PDA, Iridium, Newton, Velo, Digital Cassettes, BetaMax, etc.
 – Right place, right invention, right time

• All it takes is one brilliant idea
 – But you will go down a lot of dead ends.
 – Need to take lots of risk, with lots of small investments.
 – Keep picking the winners until the top ideas emerge.
 – Fail quickly, learn from the failures, and move forward fast.
 – Few people have more than one brilliant idea in their lifetimes!
Innovation for the Future

100’s of Conceptual Ideas

Feasibility Checkpoint - terminate

Move to Product - Does not succeed

Move to Product - Succeeds - Some market benefit

One or two breakthrough Ideas make it

Significant market benefit. New businesses formed.
CREATING A ROADMAP FOR THE NEXT DECADE
Most of these will be portable/mobile systems.
10x to 100x Increase in Units

Computing Growth Drivers Over Time, 1960 – 2020E

Increasing Integration

1MM+ Units

10MM+ Units

1B+ Units / Users

10B+ Units???

Mobile Internet

More than Just Phones

iPad
Smartphone
Kindle
Tablet
MP3
Cell phone / PDA
Car Electronics
GPS, ABS, A/V
Mobile Video
Home Entertainment
Games
Wireless Home Appliances

Note: PC installed base reached 100MM in 1993, cellphone / Internet users reached 1B in 2002 / 2005 respectively;
Source: ITU, Mark Lipacis, Morgan Stanley Research.
But Cost is Important

- Semiconductor Revenue grows at <10%/year on average.
- Low cost solutions are critical to growth.

Source: iSuppli
CO2 eliminated from the Atmosphere equivalent to taking the following number of cars off the road...

12,500 Cars

Each 1 Watt power reduction per IC can reduce MW of power on the grid...

+2,500 Cars

+3,000 Cars

+6,700 Cars

+2,700 Cars

Average Power Savings
Estimated Product Quantity
1M Units/year
For each 1W of power saved
Total Power Savings: 1 Mega-Watts

For each 1W of power saved
Total Power Savings: 1 Mega-Watts
Wireless?

Growth of Wireless to Continue Unabatedly!

• 5 Billion people to be connected by 2015 (Source: NSN)
• 7 trillion wireless devices serving 7 billion people in 2017 (Source: WWRF)
 – 1000 wireless devices per person?

[Courtesy: Niko Kiukkonen, Nokia]
THE IT PLATFORM OF THE NEXT DECADE(S)

[Infrastructural core]

[Sensory swarm]

[Mobile access]

TRILLIONS OF CONNECTED DEVICES

[J. Rabaey, ASPDAC'08]
WHAT DO WE NEED?
Life in the Future

From back in the 60’s!!

Technology was changing the world.
- Man on the Moon
- Concorde and Jumbo Jets
- Electric Music, Video, Cassettes
- etc......

But......major limitations to the Jetson’s World

- Power, Cost, size

What does it take?
- Wireless Networks
- Low Power Circuits
- Sensors
- Human Machine Interfaces
- Energy Harvesting
- RF/Analog
- High speed Data Communication
- Data Analysis
Energy Generation and Management

• Major limitation for expansion of the application space for semiconductors
 – Intelligent environment requires wireless and autonomous systems that can operate for approximately 10 years.
 – Two types of portable electronics:
 • Performance “hub” devices such as computers, multi-media devices, wireless hubs and PDAs which have 1W to 5W needs today.
 • Distributed systems with micro and nano watt needs.

• Typical autonomous system would be:
 – 10 years life.
 – Battery size/cost point is ~1mAh.
 – Average power available from battery < 1nW.
Battery Technology Is Trailing Demand

- Battery technology scaling at about 2x every 10 years compared to semiconductor technology at 2x every 18 months.

Energy gap of a mobile device

New use cases:
Web, email, video, 3D graphics

New use models:
Always on, always connected

Energy/10cc Battery
Energy used/2-day operation

Source: Öfversten [IWPC’08], Samms [IWPC’08]

Delagi, ISSCC10
Silicon performance advances require power management

- Performance: +20~30% node-to-node
- Leakage: a concern in 90nm, required fundamental change in 65nm

Source: Gammie [ISSCC’08]

Delagi, ISSCC10
Power Management Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Dynamic Power Reduction(^1)</th>
<th>Leakage Power Reduction(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-VT and Multi-L</td>
<td>Varies</td>
<td>34%/-7x</td>
</tr>
<tr>
<td>Clock Gating</td>
<td>~12% - 30%</td>
<td>Varies</td>
</tr>
<tr>
<td>Memory PM Modes</td>
<td>~2x</td>
<td>3-30x</td>
</tr>
<tr>
<td>Voltage Islands</td>
<td>CV(^2)F</td>
<td>~1.5x</td>
</tr>
<tr>
<td>Adaptive Voltage Scaling Static (Open Loop)</td>
<td>~9-15%</td>
<td>~10% -27%</td>
</tr>
<tr>
<td>Adaptive Voltage Scaling Dynamic (Closed Loop)</td>
<td>~10-19%</td>
<td>~15%-50%</td>
</tr>
<tr>
<td>Optimized IP</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td>Power Islands</td>
<td>NA</td>
<td>~20-100x</td>
</tr>
<tr>
<td>Dynamic Voltage and Frequency Scaling (DVFS)</td>
<td>Varies</td>
<td>Varies</td>
</tr>
</tbody>
</table>

\(^1\) Figure of Merit, Impact is design dependent
Industry breakthrough examples (published)

- **Power & performance** management technology
- Reduces both leakage and active power, increases performance

65nm leakage power reduction: 300X
- SRAM retention
- Logic power gate
- Channel length
- Logic retention
- Process/temp AVS
- DVFS

45nm active power reduction: 1000X
- Adaptive Body Bias (ABB) for performance & power
- Retention ‘Til Access (RTA)

Mair [VLSI'07]

Gammie [ISSCC'08]

Delagi, ISSCC10
Directions in ultra-low power

Ultra-low power video codec

Source: JSSC Nov 2009

Video decoding for <2 mW at Vdd = 0.7V

Ultra-low power medical processor

Source: ISSCC 2008

MSP430 uC with SRAM at Vdd = 0.3V

Ultra-low power DC-DC converter

Source: MIT research

DC-DC with 75% efficiency down to 10 μA

Energy scavenging

Source: JSSC Nov 2009

Scavenging energy from the environment
Next Steps in Low Power Electronics
Ultra Low Power Chip Design

Typical Design for Intelligent Ambient Applications

1mA-Hr Battery for 10 years
1uA average power budget
<1uA average for digital system

- Use circuit design techniques for optimizing energy-performance
- Then apply system design and software management to reduce power by another order of magnitude

Sridhara, VLSI Symp. 2010
Battery Technology is Critical

- Li-ion was the game-changer for the 2000’s.
 - In 1990s nickel cadmium and nickel metalhydride rechargeable batteries were the preferred energy technology
 - In last 10 years, lithium batteries have taken over with a current market share of over 70%.
 - Lithium cell is its high energy density, => small size, lightweight, longer lifespan than comparable battery technologies.
 - Also, high power, high-energy efficiency, low self-discharge, and good cycle life. Specific energy densities greater than 190 Wh/kg.
 - But now approaching its limit with small incremental gains

- We need the next breakthrough in energy delivery for the 2020s!!
 - Capacity, Cycles, Rate, are critical parameters.
Renewable Energy

• Renewable Energy Has Tremendous Potential

• Solar energy products
 – Photovoltaic systems
 – DC/AC power inverters

• Wind energy products
 – Wind turbines

• Hydro energy products

• Heating systems
Energy Harvesting

- Vibrational, thermal, photovoltaic, RF power have been proposed.
 - Harvest energy from motion, heat, light and RF.
 - Great for triggering imagination.

- But micro and nano ampere power levels are very inefficient.

- Laws of conservation usually apply
 - Inserting a harvester can increase the energy usage by the generating system.

Need a lot more understanding to appreciate trade-offs and practical solutions.

Nokia developing phone that recharges itself without mains electricity

Prototype harvests radiowaves from TV, radio and other mobiles ~ 5mW from 1000 energy sources.
Energy Scavenging Efficiencies

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Characteristics</th>
<th>Efficiency</th>
<th>Harvested Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Outdoor</td>
<td>10~24%</td>
<td>100 mW/cm²</td>
</tr>
<tr>
<td></td>
<td>Indoor</td>
<td>100 µW/cm²</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>Human</td>
<td>~0.1%</td>
<td>60 µW/cm²</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>~3%</td>
<td>~1-10 mW/cm²</td>
</tr>
<tr>
<td>Vibration</td>
<td>~Hz–human</td>
<td>25~50%</td>
<td>~4 µW/cm³</td>
</tr>
<tr>
<td></td>
<td>~kHz–machines</td>
<td></td>
<td>~800 µW/cm³</td>
</tr>
<tr>
<td>Embedded Energy</td>
<td>Chemical</td>
<td>~90+%</td>
<td>~90+%</td>
</tr>
<tr>
<td></td>
<td>Radioactive</td>
<td>~30%</td>
<td>~1- 20 µW/cm³</td>
</tr>
<tr>
<td>RF</td>
<td>GSM 900 MHz</td>
<td>~50%</td>
<td>0.1 µW/cm²</td>
</tr>
<tr>
<td></td>
<td>WiFi</td>
<td></td>
<td>0.001 µW/cm²</td>
</tr>
</tbody>
</table>

⇒ Need to look at non-traditional areas for scavenging energy. What else do we have?
⇒ Energy generation using biological, micro-fuel cells, etc.
Mobile Internet System

- It will really be a more distributed system
 - The internet of things – **THE SWARM**
- **Use multiple energy sources**
 - Battery for general functionality
 - energy management and control, wake-up functions, etc.
 - Storage caps for high current functions
 - storage, communications
 - Energy scavenging for extended battery life
 - Wireless power sources for connection to grid
 - Directional use of RF, light, etc. in localized area for “topping up”
- **Intelligent energy management and control**
 - Highly efficient on-chip power processing
 - Control of energy sources and delivery
 - Management of power demand and access
 - Unreliable energy sources
KEY CHALLENGES
Challenges for Next Decade - 1

• **Low-Power Electronic Design**
 – Need another two to three orders of magnitude of power reduction.
 – Most known circuit design approaches have been utilized.
 – System-level power optimization is needed.
 – Can the process technology help? Not just digital any more.

• **System Design**
 – Managing interconnectivity: wireless and network connectivity; protocols are expensive in power and complexity.
 – Partitioning for power optimization.
 – Security.

• **Low-Power Sensor Technology**
 – The intelligent environment requires a wide range of high performance sensors.
 – Sensor interface and control needs to become sophisticated.
Challenges for Next Decade - 2

• **Battery and Storage Technology**
 – We need micropower and nanopower battery capability
 – Nanotechnology can provide some of the solutions
 – Smart Batteries, intelligent power management

• **Energy Scavenging**
 – Truly scavenged from waste
 – Efficiency in collection and storage.
 – We need more work in understanding availability, applicability, and harvest/storage.

• **Off-grid power distribution**
 – Local wireless power to storage elements
 – Sense and deliver on-demand
 – Connecting to the grid
CHANGING PARADIGM
Optimizing the system requires collaboration and co-design

- **System & Software:**
 - Essential to maximize circuit level advances

- **Architecture & Packaging:**
 - Duty-cycle of CPUs
 - 3D ICs

- **Silicon Technology:**
 - Low-power optimized

- **Circuit Technology:**
 - Power management

Delagi ISSCC 2010
CONCLUSIONS
Concluding Reflections

• We are on the threshold of a new wave of electronic technology as we move into the decade.

• Process technology not driving the roadmap any more – applications driven roadmaps will define what we do.

• Innovation requires risk-taking and exploration – step outside the box and use lateral thinking processes.

• Ubiquitous intelligence is going to drive wireless connectivity.

• Energy generation and management are critical.

• Low power and cost are key drivers for market growth.

• Close collaboration across all disciplines of electronic engineering from transistors to systems to software.
THANK YOU!!