Recent Developments in Transceiver SoC Design for Next Generation Optical Networks

Prof. C. Patrick Yue
Department of Electronics and Computer Engineering
Hong Kong University of Science and Technology (HKUST)
Motivation

BoF circuit and system design

Measured results

Summary and future work
Motivation

• Mobile data to grow >1000x over 2010 to 2020 [1]
• Expected 5G initial deployment in 2020 [1]

• New emerged mm-wave spectrum for 5G [2]
 • 26GHz, 28GHz, 32GHz, 38GHz, 70/80GHz…

Motivation

- Macro/pico cells widely used to extend coverage and data throughput capacity in 4G LTE and 5G cellular network
- Wired connection sometimes physically impractical or costly
- **Hybrid fiber-wireless network**: flexible and high performance solution for short-range backhaul links deployment
Motivation

Conventional Solution:

Proposed Solution:

- Conventional fiber-wireless network composed of discrete O/E and RF components is costly and power hungry
- Redundant baseband digital processing introduces large overhead and latency
Previous Work

- 60GHz 4Gb/s NRZ to QPSK Modulator [1]

- Work at 60GHz
- No power amplifier integrated -> **external PA needed**
- No IQ calibration -> **may suffer from image tone**
- No on-chip demodulation -> **difficult to measure BER**

[Y. Wang, ESSCIRC 2015]
Previous Work

- 60GHz 4Gb/s NRZ to QPSK Modulator [1]
 - Data rate limited to 4Gb/s
 - Unbalance I/Q performance -> May be IQ mismatch

EVM = -14dB

EVM = -12dB

[Y. Wang, ESSCIRC 2015]
Outline

- Motivation
- BoF circuit and system design
 - Optical RX with integrated PD
 - Wideband QPSK TX
 - Built-in-self-test
- Measured results
- Summary and future work
The BoF System Architecture
Optical Receiver

- Optical RX
 - on-chip PD
 - inv-based TIA
 - 3-Stage CTLE
 - MA/LA

[Q. Pan, VLSI 2014]
P-well/Deep N-well PD Structure

- Eliminate the slow substrate diffusion current
- Deeper junction depth and lighter doping concentration
- Compatible with optical receiver design when operating in the avalanche mode
- **Measured Responsivity**

 - Input light power (-5dBm) is chosen according to sensitivity to work in the linear region
 - 51mA/W @0.5V; 272mA/W @12.3V (optimal); 1.03A/W @ 12.8V (maximum)
P-well/Deep N-well PD Structure

- Measured Optical Frequency Response

- Normalized to DC responsivity @ avalanche mode
- Slow roll-off frequency response
- Fitting -3dB bandwidth: 500MHz
Inductive Cascode Inverter-Based TIA

- Given a 480-fF PD capacitance, boost the bandwidth and minimize the input referred noise (IRN)
By interpolating the poles and zeros, a slow roll-up (5~10dB/decade) response can be achieved.
Slow Roll-Up 3-Stage Cascaded CTLE

- Measured Electrical Frequency Response
 - The gain of optical RX

- Tested by direct probing without the on-chip PD
- 33-dB CTLE tuning range
QPSK Transmitter

- QPSK TX
 - 2-stage PPF
 - Wideband PA
 - Gilbert mixer
 - Ripple cancel
Wideband Power Amplifier

- Two amplification stages with neutralization cap
- Coupled resonator wideband matching network

<table>
<thead>
<tr>
<th>M1A/M1B</th>
<th>CC1</th>
<th>M2A/M2B</th>
<th>CC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>64,\mu m/60,nm</td>
<td>23fF</td>
<td>128,\mu m/60,nm</td>
<td>45fF</td>
</tr>
</tbody>
</table>
Coupled Resonator based Wideband Matching

- Transform the loading to Z_{opt} obtained from load pull simulation
- $R_L = 50\Omega$, $C_L = 25\, fF$ (PAD capacitance)
- $Z_{opt}^* : 37.5\, \Omega \parallel 123\, fF$

How to achieve wideband impedance transformation with low insertion loss?
Coupled Resonator based Wideband Matching

- The effect of k and Q

 - **large** k pushes two poles away
 - central freq increases with k
 - When is the flattest response?

 - **large** Q leads to large ripple
 - Q has little influence on peak magnitude
Coupled Resonator based Wideband Matching

- Minimal gain ripple condition: $k^2(Q^2 + 1) = 1$
- More accurate than previous mentioned $k^2Q^2 = 1$ [1]

[C. Li, TMTT 2012]
Coupled Resonator based Wideband Matching

- The impedance transformation achieved when \(\frac{L_2}{L_1} = \frac{R_L}{R_s} \)

Simulated impedance

Simulated efficiency

[H. Jia, A-SSCC 2016]
Wideband Power Amplifier

- PA Input/Inter-Stage Matching Network
 - Take advantage of gain ripple & bandwidth trade-off
 - Use the IF low pass feature to compensate ripple

- Simulated gain ripple reduces from 3.8dB to 1.3dB
BIST

- 2-stage PPF
- Cap coupling
- Current bleeding mixer
- CML driver
Built-In-Self-Test

- On Chip Demodulator to support BER test

- On-chip demod.
- Cap coupled
- Sharing the same LO with QPSK Tx

Power off when not in use
Cap. Couple Instead of Ind. Couple

- Capacitive coupling (sensing voltage)
- Inductive coupling (sensing current)

Simulated gain response from PA output stage to BIST input

- Cap coupling maintains the TX’s wideband property
Outline

- Motivation
- BoF circuit and system design
- Measured results
- Summary and future work
Chip Photo and Power Consumption

- Optical RX
- QPSK TX
- BIST
- Bandgap

Chip Dimensions:
- Width: 2.5mm
- Height: 0.9mm

Power Consumption:
- QPSK TX: 0.59mm²
- BIST: 0.19mm²
- Optical RX: 0.26mm²
- Others: 15.8mW, 6%
- Optical Rx: 103mW, 38%
- QPSK Tx (w. LO buffer): 122mW, 44%
- BIST: 33mW, 12%

Technology:
- 65nm CMOS process
Continuous Wave Measured Results

The QPSK TX Conversion Gain

- 24.7dB at 32GHz, >24dB from 25.3 to 40.3GHz
- 3.4dB gain ripple (no include IF path LPF)
- 13.8dBm Psat at 30GHz
The QPSK TX Large Signal Performance

- Measured 10.1dBm output 1dB point
- Measured 17.7dBm output IP3 point
Continuous Wave Measured Results

- The QPSK TX Image Rejection Ratio (IRR)
 - Improved by manually tuning the PPF res array

- IRR improved from -19.8dBc to -38.8dBc
- -38.8dBc image rejection and -46.3dBc LO rejection
Optical RX Measured Results

- Measurement Setup
 - External phase shifter

- Manually tuning the phase for optimal sampling
- The error free sampling phase range is measured
Optical RX Measured Results

- The eye and BER from RX’s output

- 0.38UI error free sampling CLK phase range
Optical RX Measured Results

- Optical RX sensitivity

- The minimal error free input amplitude is 21.5mVp-p
- Converts to 165uAmp-p using a 80Ω input impedance
BoF Data Measured Results

Measurement Setup

- **PC**
- **ARM**
- **Power supply**

PatternPro SDG 12070, ~30Gb/s

Optical RX

Demux

QPSK TX

BIST

BIST OUT₁

BIST OUT₂

Sub-sampling oscilloscope

Real-time Oscilloscope

R&S FSW67, ~67GHz

R&S RTO1044

~4GHz, 20GS/s

Error checker

PatternPro SDA 13020, ~32Gb/s

Spectrum analyzer

Keysight E8257D, ~67GHz

32G LO

50Ω

Keysight DCA-X 86100D, ~50GHz
BoF Data Measured Results

Measurement Setup

- On-chip probing for high speed signals
- BERT system, signal gen, subsampling osc, real time osc
BoF Data Measured Results

- **The EVM of TX’s output**

 - 6.4Gb/s QPSK
 - EVM = -18.8dB (32767 symbols)

 - 12.8Gb/s QPSK
 - EVM = -15.6dB (32767 symbols)

- Using $2^{15}-1$ PRBS pattern, 32767 symbols collected
- Degraded due to insufficient OSC’s BW
The eye and BER from BIST’s output

- 0.49UI error free range at 16.0Gb/s data rate
Performance Summary and Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>65nm CMOS</td>
<td>65nm CMOS</td>
<td>65nm CMOS</td>
<td>40nm LP CMOS</td>
</tr>
<tr>
<td>Freq. (GHz)</td>
<td>32</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>DR (Gb/s)</td>
<td>16.0 (QPSK)</td>
<td>7 (16QAM)</td>
<td>14.08/28.16 (QPSK/16QAM)</td>
<td>3.5/7 (QPSK/16QAM)</td>
</tr>
<tr>
<td>TX EVM (dB)</td>
<td>-15.6* (TX-to-BIST)</td>
<td>-21 (TX-to-BIST)</td>
<td>-20.1/-20.0 (TX-to-RX)</td>
<td>-14.8/-15.2 (TX-to-RX)</td>
</tr>
<tr>
<td>TX P<sub>DC</sub> (mW)</td>
<td>138 Excl. LO</td>
<td>174</td>
<td>186</td>
<td>181***</td>
</tr>
<tr>
<td>TX Eff. (pJ/b)</td>
<td>8.6</td>
<td>24.9</td>
<td>13.2/6.6</td>
<td>78.4/39.2</td>
</tr>
<tr>
<td>CG (dB)</td>
<td>24.7</td>
<td>N/A</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>P<sub>-1db</sub> (dBm)</td>
<td>10.1</td>
<td>6.3</td>
<td>10.3**</td>
<td>10.8***</td>
</tr>
<tr>
<td>BIST</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BER</td>
<td><10<sup>-12</sup> (TX-to-BIST)</td>
<td>N/A</td>
<td>N/A</td>
<td><10<sup>-4</sup> (TX-to-RX at 3.6m)</td>
</tr>
<tr>
<td>TX frac. BW (%)</td>
<td>46</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>TX Area (mm<sup>2</sup>)</td>
<td>0.59</td>
<td>0.79</td>
<td>1.03</td>
<td>1.5*</td>
</tr>
</tbody>
</table>

*EVM at 12.8Gb/s **Saturated output power ***Each TX path
Summary

- Wideband 32GHz QPSK with integrated optical RX and BIST is presented

- Coupled resonator based wideband matching
 - Ripple cancellation using IF intrinsic LPF

- An error-free 16.0Gb/s data rate is achieved at 8.6pJ/b bit efficiency