Upcoming Events

Thursday October 18, 2018, 6:00-8:00PM
Title:  “Energy-Efficient Circuits and Systems for Computational Imaging and Vision on Mobile Devices” by Prof. Priyanka Raina, Stanford University
Location: Texas Instruments Silicon Valley Auditorium
2900 Semiconductor Dr., Building E, Santa Clara, CA (Register here)

Date & Time: Thursday October 18, 2018, 6:00-8:00PM

Location: Texas Instruments Building E Conference Center, 2900 Semiconductor Drive, Santa Clara, CA 95051

Directions: TI-BldgE-Auditorium.pdf

Registration Link: (Mandatory) : https://www.eventbrite.com/e/energy-efficient-circuits-and-systems-for-computational-imaging-and-vision-on-mobile-devices-prof-tickets-51278371991

Registration Fee: FREE, Donation Requested

IEEE SSCS/CAS/SPS/CS members: FREE
IEEE members – $2 donation
Non-members – $5

Abstract:

85% of images today are taken by cell phones. These images are not merely projections of light from the scene onto the camera sensor but result from a deep calculation. This calculation involves a number of computational imaging algorithms such as high dynamic range (HDR) imaging, panorama stitching, image deblurring and low-light imaging that compensate for camera limitations, and a number of deep learning based vision algorithms such as face recognition, object recognition and scene understanding that make inference on these images for a variety of emerging applications. However, because of their high computational complexity, mobile CPU or GPU based implementations of these algorithms do not achieve real-time performance. Moreover, offloading these algorithms to the cloud is not a viable solution because wirelessly transmitting large amounts of image data results in long latency and high energy consumption, making them unsuitable for mobile devices.
My approach to solving this problem has been to design energy-efficient hardware accelerators targeted at these applications. In this talk, I will present my work on the architecture design and implementation of three complete computational imaging systems for energy-constrained mobile environments: (1) an energy-scalable accelerator for blind image deblurring, (2) a reconfigurable bilateral filtering processor for computational photography applications such as HDR imaging, low-light imaging and glare reduction, and (3) a low-power processor for real-time motion magnification in videos. Each of these accelerator-based systems achieves 2 to 3 orders of magnitude improvement in runtime and 3 to 4 orders of magnitude improvement in energy compared to existing implementations on CPU or GPU platforms. In my talk, I will present the energy minimization techniques that I employed in my designs to obtain these improvements. In addition, I will talk about how these systems achieve energy scalability by trading off accuracy with execution time. This is essential in real-life applications where one might still want to run a complex algorithm in a low-battery scenario but might be willing to sacrifice some visual quality.
I will conclude my talk by giving my vision for how such accelerator-based systems will enable energy-efficient integration of computational imaging and deep learning based vision algorithms into mobile and wearable devices for emerging applications such as autonomous driving, micro-robotics, assistive technology, medical imaging and augmented and virtual reality.

Bio:

Priyanka Raina is an Assistant Professor in Electrical Engineering at Stanford University. Previously, she was a Visiting Research Scientist in the Architecture Research Group at NVIDIA Corporation. She received her Ph.D. degree in 2018 and S.M. degree in 2013 in Electrical Engineering and Computer Science from MIT and her B.Tech. degree in Electrical Engineering from Indian Institute of Technology (IIT) Delhi in 2011. Priyanka’s current research interests are in the area of designing energy-efficient and high-performance circuits and systems for enabling complex computational photography, computer vision and machine learning based applications on mobile and wearable devices. Her research results include the demonstration of the first hardware-accelerated systems for blind image deblurring (awarded the best student paper award at ESSCIRC 2016 and the 2016 ISSCC student research preview award), high-dynamic-range and low-light imaging (presented at ISSCC 2013, JSSC 2013) and real-time motion magnification in videos.

Welcome

to the Santa Clara Valley chapter of the Solid State Circuits Society

Calendar

October 2018
M T W T F S S
     
1234567
891011121314
15161718192021
22232425262728
293031  

Next Meeting

October 18, 2018

“Energy-Efficient Circuits and Systems for Computational Imaging and Vision on Mobile Devices” by Prof. Priyanka Raina, Stanford University

Search Previous Events