

Software Defined Networks for Future Networks and Services (IEEE SDN4FNS 2013), November 11-13, 2013, Trento, Italy

Scalable On-Demand Network Management Module for Software Defined Telecommunication Networks

Julius Mueller (TU Berlin / Fraunhofer FOKUS) Julius.mueller@tu-berlin.de www.av.tu-berlin.de/jm

Andreas Wierz (TU Berlin / RWTH Aachen) andreas.wierz@oms.rwth-aachen.de

Thomas Magendaz (TU Berlin / Fraunhofer FOKUS) Thomas.Magedanz@fokus.fraunhofer.de www.fokus.fraunhofer.de/go/ngni

WIRELESS WORLD RESEARCH FORUM

About the Speaker

Dipl. Inform. Julius Mueller

Chair Next Generation Networks

Kaiserin-Augusta-Allee 31 10589 Berlin, Germany

Phone: +49 30 3463 7170 julius.mueller [at] tu-berlin.de

Scientific work and PhD focus on:

- Evolved Packet Core (EPC)
- Software Defined Networks (SDN)
- Policy Control and Flow Based Charging
- Cross-Layer Composition within NGNs and FI

Technical University Berlin

Institute for Telecommunication Systems Chair Architekturen der Vermittlungsknoten / Next-Generation-Networks

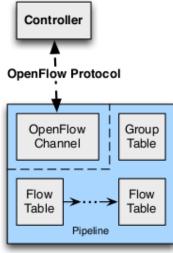
Fraunhofer Institute FOKUS

Competence Center Next Generation Network Infrastructures (NGNI)

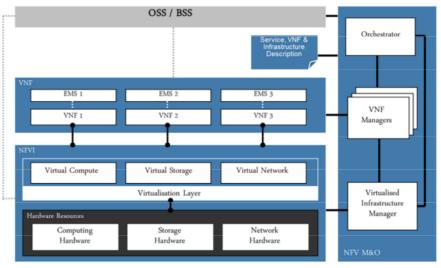
Agenda

- Introduction and Problem Statement
- Background: Telco Network Evolution
- On-Demand Network Management Algorithms and Specifications
 - Elastic Network Design
 - Adaptive Flow Placement
- Implementation and Integration
- Conclusion and Future Work

Introduction and Problem Statement

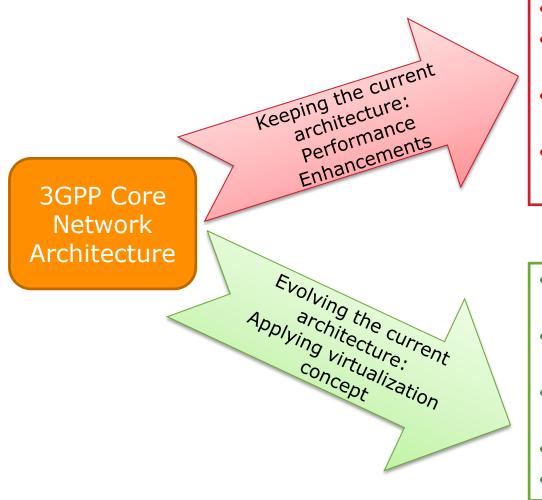

- Main trends in today (mobile/fixed) telecommunication networks
 - Heterogeneous and partially RAN deployment (WiFi, 4G, Femto Cells, ...)
 - Limited spectrum and radio capacity (800, 1.800 and 2.600 MHz for LTE in DE)
 - Increasing number of mobile devices (smartphones, tablets, laptops, ...)
 - Always on quasi permanent connection between the device and the network
 - High bandwidth demands large variety of apps and multimedia services
 - Cheaper flat-rate tariffs offered by the network operator
 - Strong grows in IP data and 3GPP Diameter protocol signaling
- Key research challenges:
 - Handling the IP data and Diameter signalling traffic grows efficiently, QoS, mobility, security, Network-as-a-Service (NaaS), elasticity and flexibility on the data path, etc.
- Today's approaches: Access- and core network congestion handling approaches
 - TR 22.805 FS_UPCON Study on "User Plane Congestion Control"
 - TR 22.806 FS_ACDC Study on "Application specific Congestion control for Data Connectivity"
 - TR 23.843 FS_CNO Study on "Core Network Overload solutions"
 - 3GPP Policy Control and Charging (PCC) architecture (TS 23.203)

SDN & NFV Definitions and Concepts


- Software Defined Networks (SDN)
- Definition: 'Physical separation of the network control plane from the forwarding plane' (ONF)
- Open Networking Foundation (ONF)
- <u>https://www.opennetworking.org/index.php</u>

OpenFlow Switch

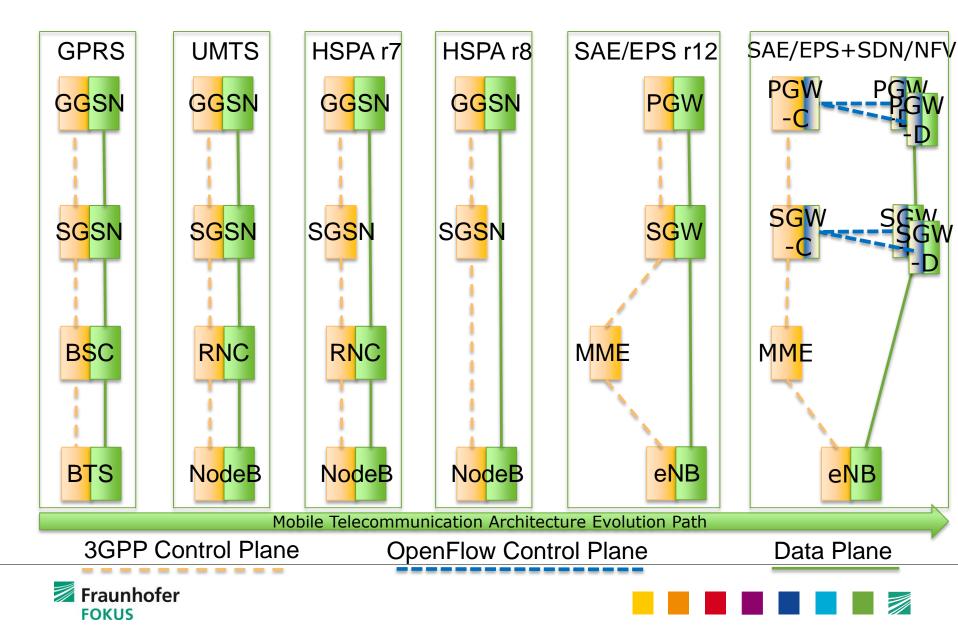
Source: ONF Spec. OpenFlow v1.4.0


- Network Function Virtualization (NFV)
- Definition: 'Decouple software from specific hardware. Modular Virtual Network Functions (VNF) run on COTS hardware.'
- ETSI Industry Specification Groups (ISG)
- http://portal.etsi.org/portal/server.pt/community/NFV/367

• Source: Network Functions Virtualisation – Update White Paper 2

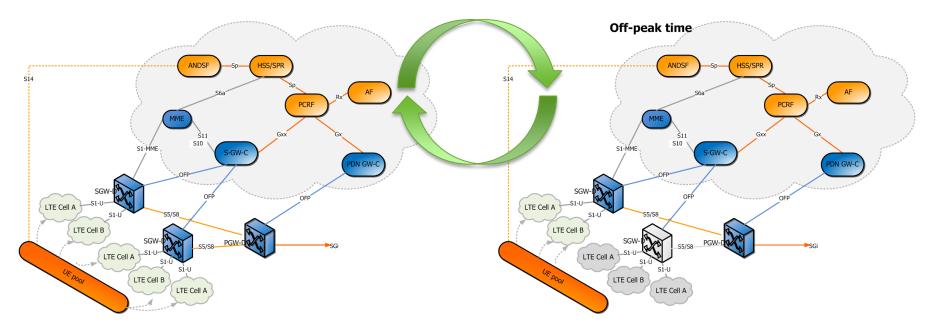
Core Network Evolution Strategies

- Short term optimizations
- Enhancing capacity through improving system performance
- Overprovisioning: Adding additional redundant components
- 3GPP Access- and core network congestion handling approaches


- SDN: Separation of data- and control-path
- NFV: Flexibility in controlling architecture components
- Elasticity in data- and controlpath
- Smart usage of network resources
- Dynamic Service Chaining

Time

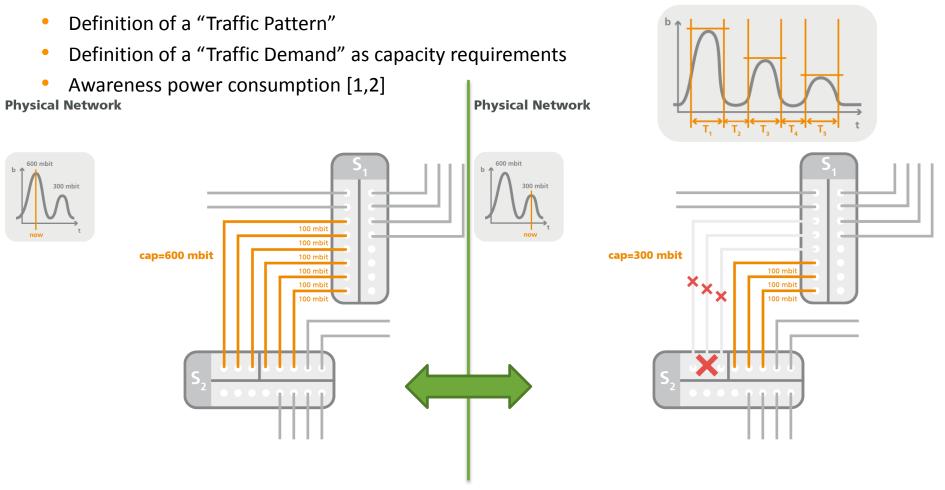
Fraunhofer



Mobile Core Network Architecture Evolution Path

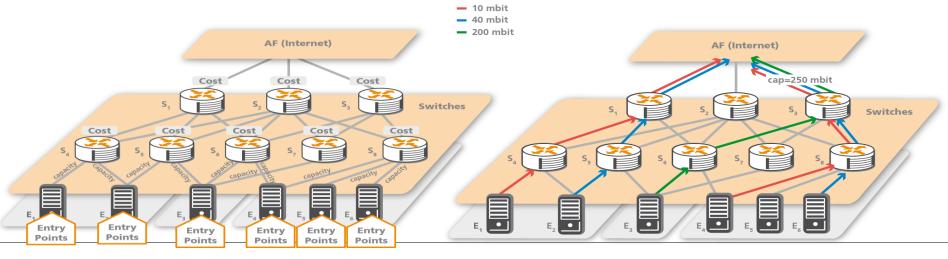
Business Driver: Elastic and Flexible Network Design - Example EPS

Other Business Driver: Multi Tenancy, Redundancy, Efficiency, Service Chaining



- Elastic network design aligned on real-time network load situations
- Enablement and disablement of redundant access- and core-network elements
- Optimized energy consumption of the access- and core-network
- Network Resources as a Service (NRaaS) and on demand

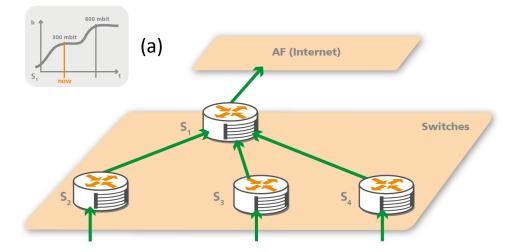
Traffic Pattern, Traffic Demands and Line Cards

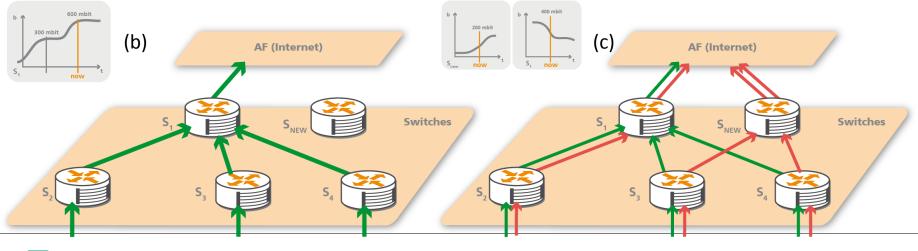

[1] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright, Power awareness in network design and routing, INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, april 2008, pp. 457 –465.
[2] GreenTouch Green Meter Research Study: Reducing the Net Energy Consumption in Communications Networks by up to 90% by 2020, A GreenTouch White Paper, Version 1.0, June 26, 2013

How to choose traffic patterns?

Routing Formulation as Mixed Integer Program (MIP)

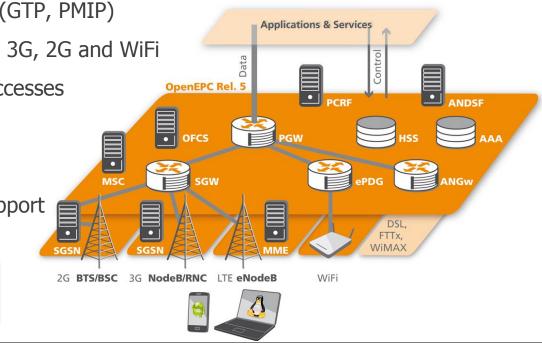
- <u>Goal</u>: Definition of an **optimization schema** that **minimizes the weighted operational costs** arising in each of the **traffic pattern and active network element** that we need to support.
- Fat tree network topology design of physical network model: G = {V, E}
- Enriching topology model G with meta data
 - Physical line cards per switch/node
 - Physical interconnection as links between line cards (connectivity map)
 - Edge with maximal capacity of each physical link {u,v}
 - Active links have costs
- Approach: Dantzig-Wolfe reformulation as Mixed Integer Program
 Routing Patterns




Elastic Network Design with SDN & VNFs

- Adding a new Virtual Network Function (VNF) (e.g. switch) to the network requires new routing metric
- New switch SNEW added
- Calculate new routing metric (red)
- Sequential handover from old to new routes

Routing Paths fixed to logical nodes



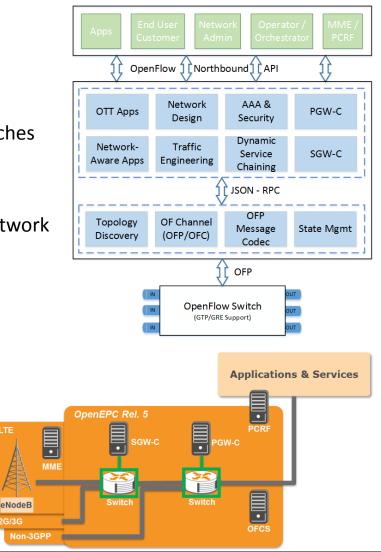
Routing Paths fixed to logical nodes

OpenEPC Rel. 5: Mirroring the Future Operator Core Network

- OpenEPC includes the main functions of 3GPP Evolved Packet Core (3GPP Release $8 \rightarrow 12$)
- The principles of standard alignment, configurability and extensibility have been respected in the overall architecture and in the specific components implementation
- OpenEPC Rel. 5 enables the establishment of small operator network testbeds including
 - Core network mobility support (GTP, PMIP)
 - Deep integration with real LTE, 3G, 2G and WiFi
 - AAA for 3GPP and non-3GPP accesses
 - Policy and Charging Control
 - Access network selection
 - Common mobile equipment support

PLEASE NOTE: OpenEPC does not claim 100% standard compliance, but allows for early prototyping

open e


core net dynamics

User Plane Realization – SDN with OpenFlow 1.4.0

- For user plane handling, OpenEPC Rel. 5 includes the development of an initial SDN solution
 - Splitting of gateways into Control and multiple Switches
 - Communication via OpenFlow protocol 1.4.0
 - Flexible deployment of control components
 - Flexible data traffic management through elastic network design
- SDN Controller:
 - OpenFlow 1.4.0 protocol support
 - JSON-RPC API for OpenFlow Controller Applications
 - Integration with SGW and PGW control entities
- Integration with OpenSDNCore Switch

(www.opensdncore.org)

- Support for GTP and GRE encapsulation
- Metering Tables extensions

Summary and Outlook

Summary

- Telco Network Evolution influences of SDN and NFV
- Business Driver: Elastic and Flexible Network Design, Flexible data path, Network as a Service
- Algorithms and Specifications
 - Elastic Network Design
 - Adaptive Flow Placement
- Implementation and Integration

Outlook

- Service placement / location algorithm
- Validation on large scale physical networks

TUB and FOKUS Publications on SDN, Traffic Engineering and Network Management

- Mueller J., Wierz A., Magedanz T., 'Scalable On-Demand Network Management Module for Software Defined Telecommunication Networks', accepted for IEEE SDN4FNS'13, Trento, Italy, Nov 11-13, 2013, <u>http://sites.ieee.org/sdn4fns/</u>
- Mueller J., Wierz A., Vingarzan V., Magedanz T., 'Elastic Network Design and Adaptive Flow Placement in Software Defined Networks', accepted at International Conference on Computer Communications and Networks ICCCN 2013, Nassau, Bahamas, July 30 - August 2, 2013, <u>http://www.icccn.org/icccn13/</u>
- Mueller J., Magedanz T., 'Towards a Generic Application Aware Network Resource Control Function for Next-Generation-Networks and Beyond', IEEE ISCIT 2012, International Symposium on Communications and Information Technologies (ISCIT), DOI:10.1109/ISCIT.2012.6381026, ISBN:978-1-4673-1156-4, Page(s): 877 - 882, Gold Coast, Australia, October 2–5, 2012, <u>www.iscit2012.org/</u>
- Mueller J., Magedanz T., 'Generic-Adaptive-Resource-Control (GARC) in Next-Generation-Networks and the Future Internet', Demonstration, 12th Würzburg Workshop on IP: ITG Workshop "Visions of Future Generation Networks" (EuroView2012), Würzburg, Germany, July 23rd - July 24th 2012, <u>http://www.g-lab-deep.de/</u>
- Further publications on SDN and OpenFlow <u>http://www.openflow.org/wk/index.php/OpenFlow_based_Publications</u>

References

- OpenEPC, <u>http://www.openepc.net</u>
- OpenIMSCore, <u>www.openimscore.org</u>
- OpenSDNCore, <u>www.opensdncore.org</u>
- NGN to Future Internet Evolution, NGN2FI, <u>www.ngn2fi.org/</u>
- TU-Berlin AV, <u>http://www.av.tu-berlin.de/</u>
- Fraunhofer FOKUS NGNI, <u>www.fokus.fraunhofer.de/go/ngni/</u>
- FP7 IP Project Mobile-Cloud Networking, <u>https://www.mobile-cloud-networking.eu/</u>

4th FOKUS "Future Seamless Communication" Forum (FFF) Berlin, Germany, November 28-29, 2013

FUTURE SEAMLESS COMMUNICATION

- Theme: "Smart Communications Platforms for Seamless Smart City Applications Fixed and Mobile Next Generation Networks Evolution towards virtualized network control and service platforms and Seamless Cloud-based H2H and M2M Applications"
- FUSECO FORUM is the successor of the famous FOKUS IMS Workshop series (2004-09)
 - FFF 2010 attracted 150 experts from 21 nations
 - FFF 2011 was attended by around 200 experts from 30 nations
 - FFF 2012 was attended again by around 200 experts from <u>30 nations</u>
- See www.fuseco-forum.org

Workshop 3: "Evolution of the Operator Networks beyond EPC: SDN and NFV"

Julius.Mueller@fokus.fraunhofer.de

Questions ???

4th FOKUS Future Seamless Communication Forum (FFF)

Berlin, Germany, November 28-29, 2013

Visit our Website: www.fuseco-forum.org/

