The X Converter

Dave Edwards

OutBack Power Systems

+V_{IN} \quad L_1 \quad (1:1) \quad L_2 \quad (1:1) \quad +V_{OUT}
The X Converter
(Yet another new SMPS topology)

- Non isolated, single switch, *non inverting* buck-boost output.
- Based on the cross connecting of two independent split inductors.
- Continuous current on both input and output (ripple steering).
- Second order control-to-output response (with proper damping).
The X Converter

What it is …

• A little known buck-boost topology that provides a non inverting (non isolated) output using only a single switch;
• A topology that inherently provides continuous current on both input and output (about the same percentages as an equivalently size buck converter with an input filter);
• The optimum choice in certain, limited situations.

What it is not …

• A Power Conversion Panacea (long live the basic buck and sliced bread);
• A zero ripple topology (these are like perpetual motion machines – they simply do not exist);
• The most appropriate topology for most power conversion applications.
The X Converter – History

• First discovered in the mid 1980s while analyzing the controversial (albeit highly entertaining) claims of Dr. Ćuk[1] with regard to the universal superiority of his family of converter topologies.

• The X Converter was actually born from a true understanding of the workings of the double ripple “cancelled”, coupled core Ćuk converter (aka the Integrated Magnetics Ćuk converter).

• When presented with a schematic of the X Converter, Dr. Ćuk stated that, although very intriguing, it was completely new to him.
Deriving the X Converter

Integrated Magnetics Ćuk Converter
Deriving the X Converter

Integrated Magnetics Ćuk Converter
Deriving the X Converter
Driving the X Converter

Bucking the common mode voltage with added drive windings

Bifilar gate drive

Driver IC with signal and power grounds
Driving the X Converter

Note: these grounds must not be connected but they may be swapped for easiest signal viewing.
X Converter Line Step Response
X Converter Inductor Ripple

[Image of a graph showing the current waveforms for I(L3), I(L4), I(L5), and I(L6) over time.]
X Converter Duty Cycle to Output Transfer Function

The X-Converter
(small signal analysis - plot $V(o)$ and note how phase flips)

.ao dec 301 100 300k
.param V=15 m=3 n=1
.step param V list 10 15 20
.step param m list 1 2 4 8

V_2 [12k]
R_{ser}=10m

V_3 [100µm]

V_1 [1µm]

B_1 [1µm]

B_2 [1µm]

L_1 [102µm]

L_2 [12k]

L_3 [102µm]

L_4 [100µm]

C_1 [3.3µm]

C_2 [3.3µm]

C_3 [3.3µm]

C_4 [3.3µm]

C_5 [33µ]

I = $V(D)/([L_1]+[L_3])$

V = $V(D)/([1,4]+[3,2])$
X Converter Duty Cycle to Output Transfer Function

Note: double zero moves from right to left half plane.
Response without Damping
Thank You!