SF Bay Area Nanotechnology Council

IEEE

Archive for the ‘Upcoming Events’ Category

Bringing Better Pixels to UHD with Quantum Dots

Thursday, November 19th, 2015

 

Tuesday, December 15, 2015 151215 Charlie Hotz Nanosys Noon – 1  pm
Texas Instruments (TI) Auditorium E-1
2900 Semiconductor Drive
Santa Clara, CA
map

This seminar is being cosponsored by the Santa Clara Valley Chapter of the IEEE Vehicular Technology Society.

 

TITLE: Bringing Better Pixels to UHD with Quantum Dots
Adobe_PDF_Icon.svg

SPEAKER: Dr. Charlie Hotz, Vice President of R&D, Nanosys

 

 

ABSTRACT:
Advances in Quantum Dot chemistry and synthesis have made them an ideal emitter for backlight units in LCDs, with over 25 retail SKUs using Quantum Dots now available ranging from 7” tablet size up to 85” TV size. The next wave of technology innovation in displays is upon us now with Ultra-High Definition, whose most well-known benefit is an increase in resolution from HD to 4K, but there is much more to this new broadcast specification. High dynamic range (HDR) and wide color gamut (WCG) bring more perceptible benefits to users in terms of an improved viewing experience than improved resolution alone.
The ultra-high color gamut standard adopted for UHD broadcast, known as Rec. 2020, was originally defined for laser-based projectors where the color primaries are on the color locus of the CIE diagram. Due to the deeply saturated color coordinates, Rec. 2020 is beyond the capabilities of OLEDs and conventional LED backlit LCDs. So is the Rec. 2020 color standard reachable for consumer displays or is it only for high-end laser-based projection systems? This presentation will explore the capability of using quantum dots in LCDs to reach the ultra-high color gamut of Rec. 2020.

SPEAKER BIOGRAPHY:
Dr. Charlie Hotz sets the vision for Nanosys’ design, invention of new products and development of existing products. Dr. Hotz has been with Nanosys for 2 years and has developed the company’s large-scale QD synthesis processes and equipment, including working with all the regulatory bodies such as the EPA and local jurisdictions.

Prior to Nanosys, Dr. Hotz was Vice President, R&D for 6 years at Solexant, a QD based photovoltaics company where he develop the first ever high efficiency QD solar cells.  Dr. Hotz also served as Vice President of R&D for 7 years at Quantum Dot Corporation, where he developed many QD products for diagnostic and biological applications which are still in use today at Thermo-Fischer, who acquired Quantum Dot Corporation.  Charlie has a Ph.D. in Chemistry from Michigan.

AGENDA:

  • 11:30 am – Registration & light lunch (pizza & drinks)
  • Noon – Presentation & Questions/Answers
  • 1:00 pm – Adjourn
COST: FREE

Please RSVP here by Monday December 14 at 5PM.

November 17 Half-Day Fall Symposium: Biomimetic Nanotechnology

Wednesday, October 21st, 2015

Join us for our 11th Annual Half Day Fall Symposium on Biomimetic Nanotechnology

Tuesday Nov 17, 2015
Registration opens: 12:00 PM
Conference: 1:00 PM – 4:30 PM
Texas Instruments (TI) Auditorium E-1
2900 Semiconductor Drive
Santa Clara, CA
map

biomimetic-banner

Everywhere in nature, nanoscale features enable macro-scale phenomena.
• How is it that geckos can cling to smooth vertical surfaces and never lose their grip?
• What makes butterfly wings iridescent?
• How do chameleons change their hue?
• What keeps lily pads dry in a rainstorm?
The answer is specialized nanostructures!
Come on Nov. 17 and learn about fascinating examples of biomimicry on the nanoscale.

The symposium will also provide a forum for networking and the exchange of information among local academics, students, scientists, engineers, early stage venture capitalists and entrepreneurs who share an interest in nanotechnology and its biomimetic applications.

Speakers Panel

Biomimicry-speakers

Nanostructured Interfaces for Therapeutic Delivery–Tejal Desai, UC San Francisco

Lessons from Brain Connectivity for Next Gen 3D NanoICs–Jan Rabaey, UC Berkeley

Nanopore Sequencing of DNA Comes of Age–Hugh Olsen and Miten Jain, UC Santa Cruz

A Chameleon-Inspired Stretchable Electronic Skin–Ho-Hsiu Chou, Stanford University

There will also be a student poster session displaying student research in nanotechnology.

Fees (online registration):
IEEE Members: $25
Non-IEEE Members: $35
Unemployed/Between Jobs: $20
Students (with ID): $15
Save $5 with early registration — by November 10th
Add $10 for Registration at the door

Please register here.
Also, visit our Meetup Group.

Agenda:

12:00 Registration Begins
12:30 Networking and Lunch
1:00 Symposium begins

Emerging Non-volatile Memory, enabled by Carbon Nano-materials

Tuesday, August 18th, 2015

Tuesday, September 15, 2015
Noon – 1  pm
Texas Instruments (TI) Auditorium E-1
2900 Semiconductor Drive
Santa Clara, CA
map

 

TITLE: Emerging Non-volatile Memory, enabled by Carbon Nano-materials
Adobe_PDF_Icon.svg
 
 

SPEAKER: Dr. Ethan C. Ahn, Dept of Electrical Engineering, Stanford Nanoelectronics Lab
 

ABSTRACT:
With the advent of so-called ‘big data’ era and the increasing need for greater storage capacity in various mobile and wearable devices, it is becoming more important to explore a new storage-class memory technology. As illustrated in recent research articles and papers, significant progress on emerging non-volatile memory (NVM) devices such as spin-transfer-torque magnetic random access memory (STT-MRAM), resistive or metal-oxide RAM (RRAM), or phase-change memory (PCM), made it possible to replace the mainstream NVM (NAND Flash) and even reach certain on-chip memory requirements (e.g., L2/L3 SRAM cache). This is important, as the energy efficiency of computing circuits/systems has been increasingly limited by the memory and storage devices. In this talk, a frontier research on the near- and long- term potential of emerging nanoscale memory devices and architectures will be discussed to replace ultimately scaled CMOS memory device technologies. The emerging 1TnR (one-transistor-n-resistors) array architecture with carbon nanotube field-effect transistor as one-dimensional selection device and thus reduced sneak leakage is demonstrated as a cost-effective and 3D-stackable solution. The integrated bipolar RRAM device, for example, exhibits self-compliance characteristics with high endurance and fast switching speed. It is pointed out that the carbon nanotube electrode brings the (lithography-free) critical dimension of the memory device down to a single-digit-nanometer. The novel thermal engineering technique for low-power NVM applications is also introduced using a monolayer graphene as an interfacial thermal barrier. The programming (RESET) current of the graphene-inserted PCM device is reduced by about 40% due to an improved thermal efficiency. The status, key challenges, and promising applications of the RRAM, PCM, and STT-MRAM technologies will be briefly discussed in the talk.

SPEAKER BIOGRAPHY:
Dr. Ahn received the Ph.D. in Electrical Engineering (EE) at Stanford University in 2015, working under the supervision of Professor H.-S. Philip Wong. He joined Stanford University in 2010, after a 3-year research career on Spintronic devices (STT-MRAM) with the Korea Institute of Science and Technology (KIST) in Seoul, Korea. While at KIST, he initiated the collaborative research program with Michigan State University to study spin-dependent transports in magnetic multilayers and spinvalves. He received the B.S. and M.S. degrees in EE from the Korean Advanced Institute of Science and Technology (KAIST) in Daejeon, Korea. He is the author of over 10 peer-reviewed research journal papers in electrical engineering and applied physics, over 20 premier international conference papers, and one book chapter of Emerging Nanoelectronic Devices (ed. A. Chen, John Wiley & Sons, Ltd, Jan. 2015). His primary research interests include emerging non-volatile memory devices and architectures (including Metal-oxide RAM and Phase-Change Memory), beyond CMOS electronics (utilizing Carbon Nano-materials such as Carbon Nanotube and graphene), and various spintronic devices (including STT-MRAM and Spin-FET). Dr. Ahn has been the recipient of numerous awards and honors, including John Bardeen Student Research Award for Excellence in Nanodevice Research (2014), Best Summer Research Intern Award by T.-C. Chen at IBM T. J. Watson (2013), and GE Scholarships (2004).

AGENDA:

  • 11:30 am – Registration & light lunch (pizza & drinks)
  • Noon – Presentation & Questions/Answers
  • 1:00 pm – Adjourn
COST: FREE

 

Please RSVP here to make sure we have enough lunch.

Electrostatic Functionalization of Carbon Based Nanomaterials and Applications in Chemical, Gas and BioSensing

Tuesday, July 21st, 2015

Tuesday, August 18, 2015
Noon – 1  pm
Texas Instruments (TI) Auditorium E-1
2900 Semiconductor Drive
Santa Clara, CA
map

Please RSVP here.

 

 

TITLE: Electrostatic Functionalization of Carbon Based Nanomaterials
and Applications in Chemical, Gas and BioSensing

SPEAKER: Dr. Vasuda Bhatia, Professor, Amity Institute
 

 

 
ABSTRACT:
Carbon nanotubes (CNTs) and carbon nanomaterials based sensors have attracted a great deal
of research interest in last several years. Their unique electrical, optical and mechanical properties make them
very strong candidates for the development of the new generation of miniaturized, lowpower and highperformance
sensors. In this talk, I present a novel technology based on electrostatic charging for the functionalization of carbon based nanomaterials. The electrostatically functionalized surfaces provide oxygenated functional groups as anchoring sites for decoration with several nanoparticles to synthesize nanocarbon nanoparticles composites. Using selfassembled thermal embedding technique, thin films have been fabricated for the detection of chemical molecules as well as enzyme free detection of biomolecules.

SPEAKER BIOGRAPHY:
Dr. Vasuda Bhatia is a professor at Amity Institute of Renewable and Alternative Energy and Amity Institute of Advanced Research and Studies, Amity University, India. She received her B.Tech. (Bachelors of Technology) in Materials and Metallurgical Engineering from Indian Institute of Technology (IIT) Kanpur, India in 1995, MS in Materials Science from the University of Cincinnati in 1997 and the Ph.D. in Electrical Engineering from Texas A&M University in 2001. She was research scientist at Stellar Micro Devices, Austin, Texas; visiting faculty at IIT
Kanpur, India and research associate at Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India. Her research interests include synthesis, characterization and device applications of nanomaterials; materials for renewable energy applications; field emission devices and materials and development of sensors and sensing devices for bio, chemical and gas applications.

AGENDA:

  • 11:30 am – Registration & light lunch (pizza & drinks)
  • Noon – Presentation & Questions/Answers
  • 1:00 pm – Adjourn
COST: FREE

 

Please RSVP here to make sure we have enough lunch.