SIIT 2013

Mapping Electric-Mobility: Standards Infrastructure for Market Uptake

Ellen Filipovic´

DAIMLER AG, R&D, Department of Corporate Standardization, Sindelfingen, Germany
Technical University of Berlin, Chair of Innovation Economics
Research question

In the context of the automotive industry:

What specific standardization infrastructure contributes to ensuring global market uptake of the electric-vehicle ecosystem?

Focus:

- **Systemic standardization approach**
- **Standardization paradigms within the automotive industry**
- **Corporate strategy**
Outline

1. Motivation
2. Background
3. Results and recommendations
4. Conclusions and future research
EV standardization extends far beyond the vehicle

Managerial challenges facing EV-ecosystem stakeholders that have global operations

- Limited empirical research on paradigm for standardization infrastructure of EV-ecosystem
- But importance of standardization for market uptake identified
1 Motivation

Research approach

Methodology:
Comparative and qualitative analyses of standardization infrastructures

Aim:
- Contribute to research on the automotive industry’s standardization paradigm
- Compensate for the standards implementation dilemma
- Conceptualize a method to avert risk by determining the standards infrastructure and central standards
Standards for market uptake

- Companies invest in ensuring compliance with current requirements and with statutory provisions and regulations (Gerst and Xudong, 2013)

- Standards compliance...
 - Can limit the risks associated with corporate innovation activities.
 - Can limit the expenditures for the adjustment of the products.
 - Is favorable if industry is integrated into the standards-development process (Ghiladi et al, 1998; EC, 2008; VDA, 2011).

- Standards meet the demands, if they....
 - Allow for adoption of both a mature and a “new” technology. (Swann, 2000)

- Ambiguity remains for certification and type approval, when...
 - There is no globally applicable set of regulations and standards.
 - Deviating focal requirements hamper the effects of standards.
 - Requirements are grounded on standards in place for conventional technology (Gerst and Jacobs, 2012; Gerst and Xudong, 2013).
The EV infrastructure’s standardization paradigm

- Technology-convergent topics: activities of organizations overlap
 (Edelhoff, 2011; Van den Bossche et al, 2008; Riemer, 2010)
 - Example: ISO TC 22 SC 21 “Electrically propelled road vehicles”
 IEC TC 69 “Electric road vehicles and electric industrial trucks”

- Generally accepted paradigm for standardization of the EV-ecosystem
 - Example: Germany (c.f. Hölk, 2012)

<table>
<thead>
<tr>
<th>STANDARDIZATION (consensus based)</th>
<th>REGULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Electro-Technology</td>
</tr>
<tr>
<td>International</td>
<td>ISO</td>
</tr>
<tr>
<td>Regional (EU)</td>
<td>CEN</td>
</tr>
<tr>
<td>National</td>
<td>DIN (GER)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- But: focal/ consortia/ de facto/ proprietary standards also apply!
Mapping the standardization infrastructure – data and methodology

<table>
<thead>
<tr>
<th>Acronym</th>
<th>INS 2010</th>
<th>NPE 2011</th>
<th>ANSI 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Study of basic research by</td>
<td>Assessment performed by the German NPE and</td>
<td>Assessment performed by</td>
</tr>
<tr>
<td></td>
<td>Innovation with Norms and</td>
<td>adopted by the CEN-CENELEC EV-Focus Group</td>
<td>ANSI’s US Electric Vehicle</td>
</tr>
<tr>
<td></td>
<td>Standards (INS) by DIN</td>
<td></td>
<td>Standards Panel (EVSP)</td>
</tr>
<tr>
<td>Scope</td>
<td>656 standards and regulations,</td>
<td>346 (formal) standards, all assigned to 12</td>
<td>421 standards, codes and</td>
</tr>
<tr>
<td></td>
<td>416 assigned to 10 topics*</td>
<td>topics*</td>
<td>regulations, all assigned to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>one of 7 or more topics</td>
</tr>
</tbody>
</table>

* Topic ≈ Technical domain or standardization corpus as assigned by the expert groups

- Comparison of standards recommended for market uptake
- Identification of Intersections → Pivotal topics and “central” Standards
Mapping the standardization infrastructure – topics

INS 2010 Proportion %
- Certification, Legislation
- Functional Safety
- System Design
- Vehicle Performance
- Diagnostics
- Powertrain Control
- Electric Drive
- Vehicle Battery
- Fuel Cell
- High-Voltage System

NPE 2011 Proportion %
- EV – Vocabulary
- Cycle Mopeds & Motorcycle Appl.
- Hybrid Electric Vehicles
- Functional Safety
- Environmental Conditions
- Measurement of EV Performance
- EV – Communication
- Charging Systems
- Vehicle Safety & Personnel Protection
- Wiring, Connectors, Controllers, Rotating...
- Batteries
- EMC

ANSI 2012 Proportion %
- Education and Training
- Vehicle Components
- Vehicle User Interface
- Infrastructure Installation
- Energy Storage Systems
- Communications
- Charging Systems
ISO, IEC, SAE, UL, CEN standards dominate

<table>
<thead>
<tr>
<th>Level</th>
<th>Entity</th>
<th>Description</th>
<th>INS 2010</th>
<th>NPE 2011</th>
<th>ANSI 2012</th>
<th>INS/ NPE/ INS/ NPE/ ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation</td>
<td>UN/ECE</td>
<td>United Nations Economic Commission for Europe</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td>WP.29</td>
<td>World Forum for Harmonization of Vehicle Regulation</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td>European</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td>UN</td>
<td>United Nations Regulation</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Regulation US</td>
<td>CARB</td>
<td>California Environmental Protection Agency Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Authority</td>
<td>Legal Authorities</td>
<td>Laws: ArbSchG, ATEX, BattG</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Authority</td>
<td>NHTSA</td>
<td>National Highway Traffic Safety Administration</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>National Authority</td>
<td>US DOT</td>
<td>United States Department of Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Authority</td>
<td>US Fire</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Authority</td>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Authority</td>
<td>Transport Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ISO, IEC, SAE, UL, CEN standards dominate

SDO International
- ISO: International Organization for Standardization
- IEC: International Electrotechnical Commission
- IEEE: Institute of Electrical and Electronics Engineers
- CEN: European Committee for Standardization
- CENELEC: European Electrotechnical Standardization

SDO US
- ANSI: American National Standards Institute
- SAE: Society of Automotive Engineers, Inc.
- ASTM: American Society for Testing and Materials
- NIST: National Institute of Science and Technology
- UL: Underwriters Laboratories, Inc.

SDO China
- CHINA GB/T: Voluntary National Standard
- China Professional: Professional Standard of Energy Industry

National SDO
- DIN: DIN Deutsches Institut für Normung e. V.
- VDE: Verband der Elektrotechnik Elektronik
- BSI: British Standards Institution
- CSA: Canadian Standards Association
- MLIT: Japanese Ministry of Land, Infrastructure, Transport
- JEV: Japan Electric Vehicle Association Standards
- JSA: Japanese Standards Association

Intersections
- INS∩NPE: 33%
- INS∩ANSI: 19%
- NPE∩ANSI: 29%
- INS∩NPE∩ANSI: 18%
Only the ANSI-EVSP compendium includes standards from SSOs and consortia

<table>
<thead>
<tr>
<th>Level</th>
<th>Entity</th>
<th>Description</th>
<th>INS 2010</th>
<th>NPE 2011</th>
<th>ANSI 2012</th>
<th>Concordance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>National SSOs US</td>
<td>AIHA</td>
<td>American Industrial Hygiene Association</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>ASSE</td>
<td>American Society of Safety Engineers</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>ATC</td>
<td>Advanced Transportation Controller</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>ICC</td>
<td>International Code Council</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>ISA</td>
<td>International Society of Automation</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>NAESB</td>
<td>North American Energy Standards Board</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>NECA</td>
<td>National Electrical Contractors Association</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>NETA</td>
<td>InterNational Electrical Testing Association</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>NFPA</td>
<td>National Fire Protection Association</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>National SSOs US</td>
<td>OHSAS</td>
<td>Occupational Health and Safety Assessment Series</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>Auto Alliance</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>G3-PLC Alliance</td>
<td>G3-Powerline Communication Alliance</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>HomePlug Powerline Alliance</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>OpenADR Alliance</td>
<td>Open Automated Demand Response Alliance</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>OpenSG</td>
<td>Open Smart Grid Users Group</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>PCI SSC</td>
<td>PCI Security Standards Council</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>PRIME Alliance</td>
<td>PoweRLine Intelligent Metering Evolution Alliance</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>Zigbee Alliance</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Consortia</td>
<td>CHAdeMO</td>
<td>CHAdeMO Association</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>
Standards for EVs have long-term validity and are developed every time hype arises.
Distribution of institutional standardization across fields of activity

<table>
<thead>
<tr>
<th>Publishing Entity</th>
<th>01</th>
<th>03</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>25</th>
<th>27</th>
<th>29</th>
<th>31</th>
<th>33</th>
<th>35</th>
<th>37</th>
<th>43</th>
<th>45</th>
<th>47</th>
<th>49</th>
<th>53</th>
<th>71</th>
<th>75</th>
<th>79</th>
<th>91</th>
<th>93</th>
<th>97</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEN</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CENELEC</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IEC</td>
<td>31</td>
<td>0</td>
<td>18</td>
<td>9</td>
<td>13</td>
<td>0</td>
<td>9</td>
<td>16</td>
<td>376</td>
<td>12</td>
<td>180</td>
<td>62</td>
<td>1</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>IEEE</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>39</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>20</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>34</td>
<td>14</td>
<td>0</td>
<td>335</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO/IEC</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SAE</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>41</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>123</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DIN</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Scale

- >0
- >5
- >10
- >30
- >50
- >100

ICS = International Classification for Standards
Summary of results and implications for our model

- The more comprehensive the innovation and technological convergence, the greater the diversity of the issues that shape the overall infrastructure:
 - Ambiguous assignment of topics and ICS classes
 - Overlapping fields of institutional activities

- Insufficient consideration of...
 - Regulations (and mandatory standards)
 - Standards from the key markets of China and Japan
 - Consortia standards

- Impact of industry- and market-specific entities (IEC, SAE, UL)

- Small set of “central” standards that is to support market uptake
 - Lack of mutual understanding of “international” infrastructure
 - Having the same goals does not necessarily lead to application of the same standards

The business imperative:

→ Determine the company-specific standardization infrastructure
Conceptual framework – management of technical and market uncertainties to attain commercialization

3 Recommendations

- Clarify stakeholders’ opportunities for decreasing risk by leveraging implementation of central and peripheral standards selected according to the company’s innovation policy and competitive strategies.

Sufficient conditions for selecting standards:

- **Central**: Strong market-relevance requirement or mandatory for market entry (implement, support, or oppose)
- **Peripheral**: Market relevance, but not a market-entry requirement (take into consideration, monitor)
Conclusions and future research

- Special considerations for standardization of the EV ecosystem:
 - Extensive standardization activities in the transition period
 - Partial relevance of backward compatibility with established standards
 - Fragmented global standardization infrastructure, which extends beyond ISO and IEC when the standards of the biggest sales markets differ

- Managerial implications for standardization of innovation:
 - Potential reduction of risk through standards compliance when market entry and diffusion depend on the ability to comply with subsystems mutual standards (certification and type approval)
 - Prerequisites for a performance-based innovation strategy:
 - Infrastructure provides leeway for proprietary approaches
 - Company supports standards ex ante wherever possible

- Future Research
 - Discussion of compelling requirements for central standards
 - Empirical evidence for effects of standards on market uptake of the EV ecosystem
Thank you for your attention!

Ellen Filipovic
Doctoral candidate
R&D Department of
Corporate Standardization
ellen.filipovic@daimler.com

Bela-Barenyi-Straße
Building 20/1, HPC X452
Germany, Sindelfingen
References

Electric mobility – systemic standardization Approach

Figure: Topics of Electric Mobility Standardization, Author’s Illustration, based on ANSI EVSP (2012)
The automotive industry’s CO$_2$-emission targets

Source: Daimler internal, 2013
The automotive industry’s annual sales figures

Passenger Cars Sales Figures (million units)

- China
- USA
- WEU
- Japan
- Brasilien
- Deutschland
- Russland
- Indien
HOW STANDARDS PROLIFERATE:
(SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

14?!
RIDICULOUS!
WE NEED TO DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES.

YEAH!

SOON:

SITUATION: THERE ARE 15 COMPETING STANDARDS.

SOON:

SITUATION:
one really thick
standard
with 14
independent
chapters.
Transition to and requirements for a “new” mobility system – the EV ecosystem

Factors contributing to the transition

▲ Rising political pressure on CO2-emission regulation of passenger cars
▲ Intensified bonus-malus system for fleet consumption targets
▼ Competing technological systems and solutions
▼ Market demand and sales of ZEVs are lacking to date (2012: <200tsd units)

Requirements for the transition

► Solutions must meet consumer demands and enable a network effect
► Industrial and political institutions must stimulate a competitive socio-technical ecosystem
► (Further) development and harmonization of standards are needed to achieve feasibility, credibility and proliferation
Distribution of topics and institutional activities for the intersection between INS, NPE and ANSI

<table>
<thead>
<tr>
<th>Topics*</th>
<th>IEC</th>
<th>ISO</th>
<th>SAE</th>
<th>UL</th>
<th>CEN</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28%</td>
</tr>
<tr>
<td>Vehicle Safety & Personnel Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24%</td>
</tr>
<tr>
<td>EMC (Electro-Magnetic-Compatibility)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13%</td>
</tr>
<tr>
<td>Wiring, Connectors, Controllers, Rotating machines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11%</td>
</tr>
<tr>
<td>Charging Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>Hybrid EVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Measurements of EV Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Electric Road Vehicle – Vocabulary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>Electric Road Vehicles: Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>Share</td>
<td>40%</td>
<td>31%</td>
<td>20%</td>
<td>6%</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

*According to NPE’s assignment of topics

- Small set (18%) of standards referenced by all expert assessments
- Identified set of standards: Central standards for the EV ecosystem?