Wave Energy Power Transmission Lines: Electric and Magnetic Field Propagation

Jordan Pommerenck, Justin Pommerenck, Annette von Jouanne, Alexandre Yokochi
Experimental Background
Experimental Setup
Measuring B_ϕ
Modelling B_φ

Ampere’s Circuital Law can be written in integral or differential form via Stokes theorem (Time independent).

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

$$\int_{C} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_{S} \mathbf{J} \cdot d\mathbf{S} = \mu_0 I_{\text{enc}}$$

By integrating around the closed loop C, the expression below is obtained.

$$\frac{B_\varphi}{I} = e^{i\omega t} \frac{\mu_0}{2\pi R}$$
Modelling B_φ
Measuring E_R
Modelling E_R

Gauss’s Law can be written in integral or differential form via the divergence theorem.

$$\int_S E \cdot dA = \frac{Q}{\varepsilon_0} \quad \nabla \cdot E = \frac{\rho}{\varepsilon_0} \quad E_R = \frac{\lambda}{2\pi\varepsilon_0 R}$$

A model by Assis allows the charge to be calculated.

$$Q_B = 2\pi a L \sigma_B \quad \sigma_B = \varepsilon_0 \left(\frac{\Omega I + 2\varphi_R}{2a \ln (L/a)} \right) \quad \frac{E_R}{I} = \frac{L/\sigma \pi a^2}{2R \ln (L/a)}$$
Modelling E_R

![Graph showing Radial distance vs. E_R with data points and curves for different currents.]

E_R [V]m$^{-1}$

Radial distance [m]

- E_R (I = 10A)
- E_R (I = 7A)
- Assis (I = 10A)
- Assis (I = 7A)
Measuring E_Z
Modelling E_z

The Maxwell-Faraday equation can be written in differential form and the magnetic field theory can be inserted.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\frac{B_\varphi}{I} = e^{i\omega t} \frac{\mu_0}{2\pi R}$$

The induced electric field discussed by Gauthier and Shakur in the 80s is shown below.

$$\frac{E_z}{I} = -i\omega e^{i\omega t} \frac{\mu_0}{2\pi} \ln \left(\frac{R}{a} \right) + K$$

$$\tilde{E}_z = -\frac{\mu_0 \omega}{2\pi} \ln \left(\frac{R}{a} \right) + K$$
Modelling E_Z
Modelling E_z

The Hertz vector formulation is another method of recasting the problem in terms of potentials.

$$\Pi_z = \frac{I}{4\pi\sigma} \int_{\ell_1}^{\ell_2} \frac{e^{-\gamma r}}{r} \, d\ell \quad \gamma = (i\mu\omega\sigma)^{1/2}$$

The Hertz vector in terms of the scalar and vector potentials.

$$\phi = -\nabla \cdot \Pi \quad A = \mu\varepsilon \frac{\partial \Pi}{\partial t}$$

$$E = -\nabla \phi - \frac{\partial A}{\partial t} \quad B = \nabla \times A$$
Modelling E_z

The electric and magnetic fields can now be written in terms of a single ‘super potential’ the Hertz vector.

$$E = -\gamma^2 \Pi + \nabla \nabla \cdot \Pi \quad \quad B = \mu \sigma \nabla \times \Pi$$

The electric field can be written in analytical form.

$$\frac{E_z}{I} = \frac{i \mu \omega}{4\pi} \left[\sinh^{-1} \left(\frac{l_2 - z}{\rho} \right) - \sinh^{-1} \left(\frac{l_1 - z}{\rho} \right) \right]$$

$$+ \frac{z - l_1}{4\pi \sigma r_1^3} - \frac{z - l_2}{4\pi \sigma r_2^3}$$
Modelling E_Z
Modelling E_z

![Graph showing E_z vs. Radial distance with data points and lines representing different models and data sets.](image-url)
Correlation E_z and B_ϕ

![Graph showing the correlation between E_z and B_ϕ.](image)

- E_z Data (I = 10A)
- E_z Data (I = 7A)
- Sommerfeld and Stratton (I = 10A)
- Sommerfeld and Stratton (I = 7A)
Future Work

Explore electromagnetic fields generated by three phase transmission cables in a controlled system.

Examine the effects of frequency and current on the electromagnetic fields.

Construct a larger system and explore behavior. Use an actuator to input controlled wave pulses in the system.

Derive a predicative model using first principles.
Future Work
Future Work

Explore the effects of boundary conditions. Does the confined system impact the electromagnetic measurements at the boundaries?

Measure the electromagnetic fields with the tri-axial cable buried under various ocean floor materials. Explore field behavior at the boundary between ocean floor materials and seawater.

Thank you all very much for your attention!
References
July 25, 2014

[1] O. 2nd and 2008, “New unknowns, new buoy, new funds put OSU on wave energy crest,” LIFE@OSU.
[Accessed: 15-Apr-2014].