SPECIAL SECTION ON HVDC TRANSMISSION SYSTEMS FOR LARGE OFFSHORE WIND POWER PLANTS

GUEST EDITORIAL
Special Section on HVDC Systems for Large Offshore Wind Power Plants ... O. Gomis-Bellmunt 767

SPECIAL SECTION PAPERS
Impact of DC Breaker Systems on Multiterminal VSC-HVDC Stability .. W. Wang, M. Barnes, O. Marjanovic, and O. Cwikowski 769
Simulation Framework for DC Grid Control and ACDC Interaction Studies Based on Modular Multilevel Converters ... S. Wenig, F. Rojas, K. Schönleber, M. Suriyah, and T. Leibfried 780
Hybrid HVDC for Integrating Wind Farms With Special Consideration on Commutation Failure R. Zeng, L. Xu, L. Yao, S. J. Finney, and Y. Wang 789
A Reliability Evaluation of Offshore HVDC Grid Configuration Options ... C. MacIver, K. R. W. Bell, and D. P. Nedić 810
Nonunit Protection of HVDC Grids With Inductive DC Cable Termination .. W. Leterme, J. Beerten, and D. Van Hertem 820
Power Oscillation Damping From VSC–HVDC Connected Offshore Wind Power Plants L. Zeni, R. Eriksson, S. Goumalatsos, M. Altin, P. Sørensen, A. Hansen, P. Kjar, and B. Hesselbæk 829
Modeling and Analysis of VSC-Based HVDC Systems for DC Network Stability Studies G. Pinares and M. Bongiorno 848
Comparative Study of a Multi-MW High-Power Density DC Transformer With an Optimized High-Frequency Magnetics in All-DC Offshore Wind Farm M. A. Bahmani, T. Thiringer, A. Rabiei, and T. Abdulahovic 857
An Offshore Wind Generation Scheme With a High-Voltage Hybrid Generator, HVDC Interconnections, and Transmission .. O. Beik and N. Schofield 867
The Effect of FRT Behavior of VSC-HVDC-Connected Offshore Wind Power Plants on AC/DC System Dynamics A. A. van der Meer, M. Ndrekto, M. Gibescu, and M. A. M. van der Meijden 878
Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems .. J. Beerten, S. D’Arco, and J. A. Suá 888
Nyquist Stability Analysis of an AC-Grid Connected VSC-HVDC System Using a Distributed Parameter DC Cable Model .. Y. Song and C. Breitholtz 898
Guest Editorial
Special Section on HVDC Systems for Large Offshore Wind Power Plants

OFFSHORE wind power plants have experienced an important growth in the last decade and are becoming a key energy source worldwide. Offshore wind presents clear advantages due to high and stable wind speeds offshore, enabling the use of larger wind turbines than those commonly used on inland wind power plants. However, transmitting power to load centres also brings a number of technical challenges. Depending on the distance to the shore and the power rating, AC or DC technology may be the preferable option for integrating offshore wind power to onshore grids. There are a number of issues which have to be considered requiring substantial research and development. For DC connections, (Voltage Source Converter) VSC-HVDC technology has shown advantages over (Line Commutated Converter) LCC-HVDC. The development of multiterminal HVDC grids though brings further challenges related to system operation, control, and protection and coordination between HVDC converters, wind power plants, and the onshore system. The development of power electronic switches has reached a point where the size, rating, and the system efficiency can meet the needs of commercial HVDC. Wind power plants connected to HVDC transmission system require specific control and protection coordination between HVDC converters and wind turbines.

In response to the call for abstracts, 110 abstracts were received. After conducting the abstract revision, 60 abstract authors were invited to full paper submission. 39 full papers were received, resulting in 14 papers accepted for publication in the special issue.

The papers have covered the following key areas of research:

- Evaluation of HVDC networks: The paper from Elliot et al. introduces a comparison of DC and AC technologies for offshore wind applications in Great Britain. Offshore wind power is in an early development stage. With the time, more and more offshore wind power plants (OWPP) will be located at large distances from shore, resulting in HVDC cable connection becoming the preferred connection solution. However, the cross-over distance at which HVDC is cheaper that AC is a subject open for debate. The investigation of the technical and economic characteristics of AC and HVDC transmission technologies for OWPP connection indicates a complex interaction between technical requirements and economic benefits. Several factors, among which are the distance from shore, the OWPP installed capacity and the steady state characteristics, are found to have an influence on the cross-over distance between AC and HVDC connection for OWPP. The work from MacIver et al. focuses on reliability issues. The reliability of different offshore grid design options for connecting OWPPs is a very timely research subject, since it is starting to receive considerable attention from a number of organisations. A methodology for such a reliability investigation for connecting a cluster of far OWPP is presented. The methodology is exemplified on a number of case studies and a cost benefit analysis that compares the capital costs, electrical losses and reliability of each is performed. The conclusions show that there is a clear value in options that have an inherent redundancy and alternative protection strategies which avoid the use of expensive DC circuit breakers are shown to be potentially viable.

- Wind turbines and HVDC converter technology: For the large offshore wind farms proposed in future, optimising the collection array is a key part of the process. Whether this is AC or DC is a currently hotly debated topic and much will depend on voltage conversion for DC systems and the optimisation voltage rating of the turbine. Bahmani et al.’s paper “Comparative Study of a Multi-MW High Power Density DC Transformer with an Optimized High Frequency Magnetics in All-DC Offshore Wind Farm” addresses the complex topic of the converter. Beik et al.’s paper “An Off-Shore Wind Generation Scheme with High Voltage Hybrid Generator, HVDC Interconnections and Transmission” examines the wind turbine interconnection issue.

- Protections and control in fault conditions: Managing these complex systems during faults is a challenge. Clearly such systems should support the onshore AC network during faults, an aspect that is tackled by van der Meer et al. in “The Effect of FRT Behavior of VSC-HVDC Connected Offshore Wind Power Plants on AC/DC System Dynamics”. DC faults should also be robustly dealt with and Vidal-Albalate et al. tackle this issue in “Analysis of the Performance of MMC under Fault Conditions in HVDC-based Off-shore Wind Farms”. A protection scheme to achieve this have been outlined by Leterme et al. in the paper “Analysis of the Performance of MMC under Fault Conditions in HVDC-based Off-shore Wind Farms”. Complex systems using a VSC-HVDC node offshore with an LCC-HVDC node onshore have been proposed to help reduce losses and costs, but they form a particular challenge during faults. Zeng et al.’s paper “Hybrid HVDC for Integrating Wind Farms with Special Consideration on Commutation Failure” attempts to examine some of the issues.

Digital Object Identifier 10.1109/TPWRD.2016.2538040
Modeling and control: The introduction of any new component, such as as new power electronic converter, introduces new dynamics to the power system. These new dynamics require on the one hand adequate modeling, and on the other hand the need arises to analyze the interaction of these new dynamic components with the existing power system. These interactions can result in possible adverse effects, or can, through appropriate control means, bring benefits to the overall system. Papers from Pinares et al., Wenig et al., Song et al., and Beerten et al. focus on the modeling aspects of VSC HVDC for offshore wind applications. Pinares et al. present a novel approach for studying the stability at the DC side, focusing on the interaction between controllers in the different VSC HVDC converter stations. Wenig et al. present a MMC modeling and control concept which is suitable for transient HVDC grid studies. The model of the MMC converter, includes lower level controls such as energy balancing. Also the operation of the converter under unbalanced conditions is discussed. Song et al. present the modeling requirements of DC cable systems at high frequencies, addressing the need for distributed cable models when performing VSC HVDC grid studies involving fast transients. Beerten et al. investigate the small signal stability at the DC side. Their paper introduces a new methodology which is based on aggregated participation factors to distinguish between local modes, primarily associated with one terminal, and interaction modes involving multiple terminals, and this under various system configurations. The interactions between various systems is specifically addressed in papers by Zeni et al. and Wang et al. Zeni et al. who present the possibility to use the controls of a wind farm connected through an HVDC system to provide power oscillation damping (POD) using active power modulation. The paper not only shows that POD can be provided, but also investigates the limitations imposed by the wind farm. The control presented aims at providing a robust strategy: able to deal with communication delays, avoiding possible mechanical resonances in the wind farm, avoiding a reduction in energy yield from the wind farm and incorporating power ramp rate limiters. Wang et al. present the dynamics at the DC grid side when including the reactor typically associated with DC breakers. The paper highlights the possible stability concerns when introducing these reactances and proposes a DCPSS controller to reduce their impact.

The guest editorial board included representatives from Europe, America, and Asia:

- Jun Liang, Cardiff University, U.K.
- Eduard Muljadi, National Renewable Energy Laboratory (NREL), USA
- Dirk Van Hertem, KU Leuven, Belgium
- Jinyu Wen, Huazhong University of Science and Technology (HUST), China
- István Erlich, University of Duisburg-Essen, Germany
- Mike Barnes, University of Manchester, U.K.
- Nilanjan Ray Chaudhuri, GE, USA
- Poul Sørensen, Nicolaos Antonio Cutululis, DTU Wind Energy, Denmark
- Oriol Gomis-Bellmunt (Guest Editor-In Chief), Technical University of Catalonia, UPC, Spain
- Wilsun Xu, Editor-In Chief, IEEE TRANSACTIONS ON POWER DELIVERY
- Reza Iravani, Past Editor-In Chief, IEEE TRANSACTIONS ON POWER DELIVERY

The authors, reviewers, editors, and the past and actual Editor-in-Chiefs of the IEEE TRANSACTIONS ON POWER DELIVERY are acknowledged for their valuable efforts, which have led to high-quality papers. The Guest Editors are proud to present the special issue on HVDC Transmission Systems for Large Offshore Wind Power Plants and we hope it will be of interest for the IEEE Power and Energy Society community.

Oriol Gomis-Bellmunt, Guest Editor-in-Chief
Technical University of Catalonia
UPC
Spain

Jun Liang
Cardiff University
Cardiff, U.K.

Dirk Van Hertem, Guest Editor-in-Chief
KU Leuven
Leuven, Belgium

Mike Barnes
University of Manchester
Manchester, U.K.

Nicolaos Antonio Cutululis
DTU Wind Energy
Denmark
IEEE Transactions on Power Delivery

Special Issue on

“HVDC transmission systems for large offshore wind power plants”

Offshore wind power plants have experienced an important growth in the last decade and offshore wind is becoming a key energy source worldwide. Offshore wind presents clear advantages due to high and stable wind speeds, enabling the use of larger wind turbines than those commonly used on inland wind power plants. However, it also brings a number of technical challenges to transmit power to the load centers. Depending on the distance to the shore and the power rating, AC or DC technology may be a preferable option for integrating the offshore wind power to the onshore grids. There are a number of issues which have to be considered requiring substantial research and development to overcome those challenges. For DC connections, (Voltage Source Converter) VSC-HVDC technology has shown more and more advantages over (Line Commutated Converter) LCC-HVDC. The development of multiterminal HVDC grids brings along a number of challenges related to the system operation, control and protection. The development of power electronic switches has reached a point where the size, rating, and the switching loss can meet the needs of commercial HVDC. Wind power plants connected to HVDC transmission system require specific control and protection coordination between HVDC converters and wind turbines.

The present Special Issue focuses on recent achievements on HVDC transmission systems for offshore wind power plants. Topics of interest of this Special Issue include (but are not limited to):

- DC transmission systems for offshore wind power plants
 - Technology for large offshore transmission systems (e.g. Cable technology, energy storage)
 - Stability and reliability issues
 - Planning and operation of offshore power systems
- HVDC power converter control and operation
 - LCC-HVDC converter technology for offshore wind
 - VSC-HVDC converter technology for offshore wind
- HVDC grids
 - Multiterminal HVDC systems
 - DC-DC transformers
 - DC power flow control devices
 - Protection of multiterminal HVDC systems
 - Hybrid LCC-VSC DC grids
- Interaction between offshore wind power plants and the main AC power system
 - Offshore wind turbine/plant/cluster control for grid integration
 - Stability support to main AC power system from offshore wind power plants
 - Impact of offshore wind power variability on offshore and main AC power system stability
 - Reactive power support
 - Inertial response and frequency support

SUBMISSION GUIDELINES

This special issue solicits original work that is not under consideration for publication in other venues. Two-page extended abstracts are required for the first round of reviews. Authors of selected abstracts will be invited to submit full papers in the second round. Authors should refer to http://www.ieee-pes.org/publications/information-for-authors for information about content and formatting of submissions. Please submit a PDF version of the extended abstract, including a cover letter with authors’ contact information via e-mail to oriol.gomis@upc.edu before the deadline.
IMPORTANT DATES
April 15, 2014: Deadline for submission of extended abstracts
June 15, 2014: Completion of first-round of reviews and notification of decisions
December 1, 2014: Deadline for submission of full papers
January 25, 2015: Notification of final decisions

GUEST EDITORIAL BOARD FOR THE SPECIAL ISSUE
Jun Liang, Cardiff University, UK
Eduard Muljadi, National Renewable Energy Laboratory (NREL), USA
Dirk Van Hertem, KU Leuven, Belgium
Jinyu Wen, Huazhong University of Science and Technology (HUST), China
István Erlich, University of Duisburg-Essen, Germany
Mike Barnes, University of Manchester, UK
Nilanjan Ray Chaudhuri, GE, USA
Poul Sørensen, Nicolaos Antonio Cutululis, DTU Wind Energy, Denmark
Oriol Gomis-Bellmunt (Guest Editor-In Chief), Technical University of Catalonia, UPC, Spain

EDITOR-IN-CHIEF
Wilsun Xu, IEEE Transactions on Power Delivery