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Corporate Overview
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Santa Barbara, CA

Burlingame, CA

Headquarters: Santa Barbara, CA
Additional Facility in Silicon Valley
Publicly traded on NASDAQ
Employees: 40

Resonant is an innovative developer of 
software design tools focused currently 
upon improving  radio frequency (RF), 
front-ends, for the mobile device industry 

Initial validation of the effectiveness of 
these tools is in the design of difficult 
filters, duplexers and quadplexers

Resonant has developed a filter design suite called 
Infinite Synthesized Networks®, or ISN®, which 
enhances design productivity and precision of 
complex filters and RF Front Ends 
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Filters: Principle RFFE BoM
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Filter Market to double in less than 4 years

Increasing Value of RF Content | Higher RF Content Driving TAM Growth

Transition to Performance, Premium Driving up RF TAM   
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Resonant Design Flow
 Filter Synthesis – Acoustic Resonators (BVD)

• Custom Tool
 Filter Design Optimization – Fast Proxies for FEM

• Custom Tools
 Filter Design Simulation – FEM Tools

• Custom Acoustic Tool – “Layers”
o SAW Resonators

• Commercial EM Tool – “Sonnet EM”
o Die Layout & Filter Package

 Process Characterization & Filter Simulation
• Acoustic Resonators Simulation – “Layers”

o Fast Proxy Interpolation Tables 
• Die Layout & Package EM Simulation – “Commercial EM”
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SAW Duplexer – Modeling Complex SAW Structures
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1814 Band 3 - Pre-Fab Model vs. Measured

Pre-Fab Model
 Full FEM 
 Based on dimensions and 

materials proprieties

Measurement
 No frequency shift
 CSP part, Measured on EVB
 Ideal matching

Pre-FAB Model
Measured
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1814 Band 3 - Pre-Fab Model vs. Measured

Pre-FAB Model
Measured
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Measured to Model Summary

 Excellent agreement between measurements and Pre-Fab model
• Resonant models highly accurate, even at 2.4GHz
• Critical to our success over the past 18 months
• Enables improved design efficiency and minimizes number of fab turns

 Accuracy enables additional model features
• Manufacturing yield
• Over-temperature performance
• Power handling/durability
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Introduction: FEM and SAW
• Finite-Element Method (FEM) is astonishingly versatile.

• arbitrary materials and crystal cuts
• complex electrode shapes
• multilayered structures with several dielectrics or metals
• thermal effects are easy to simulate
• well established numerically, available commercially
• no singularities of the Green’s function (à la BEM)
• in principle, can be extended to 3D analysis

• Historically, two major obstacles for SAW simulation:
1. Very many degrees-of-freedom (DoF) are required

• Large memory requirements, long computation times
2. The difficulty with open boundary conditions

• Necessary for modeling effectively semi-infinite substrates
• Numeric instability of PML and stable M-PML



Introduction: FEM and SAW

• Efficient way to implement open boundary conditions

• originally introduced in the context of electromagnetic waves, later 
generalized to elastic and piezoelectric waves

• The computational domain is surrounded with an absorbing, 
effectively reflectionless computational material

• Suitable for 2D FEM simulation of SAW devices [Bou Matar et al. 
2007, Karim et al. 2013]

• Caveat: unstable in substrates with concave curvature of the 
slowness curves [Becache et al. 2003]

• Fallback solution: domain dimensions, absorbing boundary conditions

• Solution found (Meza-Fajardo, 2008) : Multi-axial-PML

Berenger 1994: Perfectly Matched Layer (PML)



Introduction: FEM and SAW

Hierarchical Cascading
• our solution to the problem of many degrees-of-

freedom.
• Periodicity is typical to SAW technology.
• The FEM equations describing identical periods are 

identical. It is sufficient to simulate each unique 
period type only once.

• The response of the SAW device can be simulated 
by cascading responses of unit blocks.

• the result is equivalent to full FEM simulation of the 
complete device, but with drastically reduced 
memory consumption and simulation time.



Hierarchical cascading in FEM 
simulation of finite SAW devices  
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[1] Koskela, J., Maniadis, P., Willemsen, B. A., Turner, P. J., Hammond, R. B., Fenzi, N. O., & Plessky, V.,  “Hierarchical cascading in 2D FEM simulation of 
finite SAW devices with periodic block structure”. In International Ultrasonics Symposium (IUS), 2016 IEEE (pp. 1-4)

On a PC with 32 processors 
and 128 GB RAM, 
a 5-IDT CRF having 15 
“building blocks” (274 
electrodes) was simulated, with 
about 6 second simulation time 
per frequency point (~1.3 hours 
total time).



FEM Model Reduction

Conceptual interpretation: each unit block is modeled as a multi-port, 
except that both ports contain many degrees-of-freedom.



Hierarchical Cascading

Toy resonator with 25 electrodes 
• Analyze electrode structure
• Here, only two different voltages
• First model a single block
• Model reduction to obtain B-matrix



Idea of the hierarchical cascading
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• Number of operations is proportionsl to log2(N)
• The cascading procedure does not imply any 

periodicity of acoustic/electric fields in the 
structure

• any additional approximations and exact 
acoustic and electric field distributions can be 
obtained for all FEM grid points of the device.

• That gives us a unique possibility to look what 
happens inside such a device.  

• Moreover, we can calculate the energy 
accumulated in the device and the power flows. 



FEM Model Reduction

• The device structure is decomposed into unique, irreducible unit blocks.
• Each unit block is modeled with FEM. 
• The degrees-of-freedom are classified into

• those located at the left edge xL

• those located at the right edge xR

• those located in the interior xI

• electric potential v 
• net surface charge q

• The system matrix is symmetric and sparse.

The FEM system of equations



FEM Model Reduction

• Next, the interior degrees-of-freedom are eliminated from the system matrix.

• The new, reduced system matrix describes the unit block entirely in terms of 
boundary conditions and the electric variables.

• We’ll denote this quantity as the B-matrix (Koskela-matrix).
• B-matrices are symmetric but full.

The FEM system of equations Reduced system of equations



Examples



Synchronous Resonator

Simulation with cascade-FEM
• MatLab platform, 64-bit Windows
• CPU i7-2600k, 3.4 GHz, 16 GB RAM
• quadratic elements: 6636 

DoFs/period, computation time 2.4 s / 
frequency

• cubic elements: 14625 DoFs/period, 
computation time 9.6 s / frequency

• comparison to FEM/BEM simulation

42°YX-cut LiTaO3, Al electrodes h/λ ≈
8%
p = 1.23 µm, a/p = 0.55, Nt = 241, Ng = 
40



Synchronous Resonator

Shear displacement profiles |uy| at various frequencies



Bulk wave radiation: 
synchronous resonator
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[2] V. Plessky, J. Koskela, et al., “Acoustic Radiation from Ends of IDT in Synchronous Resonators”, paper 5F-4, IUS 2017

reflector IDT

Symmetry
line

42° LiTaO3, light electrodes

I.H.P.- type structure
More detail see in:



LSAW Resonator on 42°LiTaO3
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Nt = 241: edges 24%

Nt =   61: edges 89%

Nt = 121: edges 47%

2050 MHz



TCSAW Resonator on 128°LiNbO3
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IHP Multi-Layer Resonator
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T. Takai, H. Iwamoto, Y. Takamine, H. Yamazaki, T. Fuyutsume, H. Kyoya, T. Nakao, H. Kando, M. 
Hiramoto, T. Toi, M. Koshino, N. Nakajima, “Incredible high performance SAW resonator on novel multi-
layered substrate”, 2016 IEEE International Ultrasonics Symposium. 

• LSAW → plate-mode wave in thin-film LiTaO3 layer
• constrained below by SiO2/AlN mirror, silicon substrate

• single SiO2 layer is enough in synchronous resonators
• very thin layers to suppress spurious modes

Amazing solution to BAW radiation problems.



IHP Multi-Layer Resonator
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• 2040 MHz
• Essentially free of all BAW radiation
• Tiny residual from IDT edges
• Tiny scattering from reflectors

p = 1 µm, 8% Al, LiTaO3/SiO2/AlN 1 µm/500 nm/500nm



Coupled-Resonator Filter

Complex 5-IDT structure

• 6643–7749 DOFs / period
• 15 184 DOFs / PML block
• computation on 4 parallel threads
• simulation time 3.6 s / frequency point
• comparison to FEM/BEM simulation

42°YX-cut LiTaO3, Al electrodes h/λ ≈
8%
p = 1.26…1.28 µm, a/p = 0.6



Just a beautiful picture
• Complete real 

TCSAW CRF: we can 
calculate all fields in 
all points!

• Simulated |ux|, 
|uy|, |uz| and
power flow (bottom 
picture) in a TCSAW-
coupled resonator 
filter at 2 GHz, using  
and  M-PML.  

IDT1IDT2 IDT2IDT3 IDT3

Power flow



“Hiccup”- like  structure
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P. Wright’s «hiccup» resonator
on ST quarts

Our structure on 42° LiTaO3, h/λ=8%, Al

Q≈ 240

90%



Hiccup resonator on 42°LiTaO3
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Currents in electrodes

Power flows

reflector

The device has two resonances: 
at the left edge of stopband –
resonance oflong ransducers
And the «hiccup» resonance
located near the gap.
Because of the high loss, this 
device is not used on leaky 
wave substrates. Replacing the 
gap by a “distributed gap” can 
significantly reduce the radiation 
loss.  



«Hiccup» resonator
on I.H.P.- similar structure
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Thermal Effects Simulation

We account for:
• Changes in materials parameters 

with temperature
• Elastic constants (stiffnesses)
• Piezoelectric constants
• Dielectric permittivity
• Density

• Thermal deformation
• Generally anisotropic
• Impacted by fixture (low TCE-

substrates and packages, etc.)
• Package is not modeled in Layers2 –

substrate may expand freely.
Strongly amplified view



Conclusions

• Hierarchical cascading allows fast, accurate 2D FEM simulation of finite SAW 
devices.

• The memory requirements and the achieved computational speed are drastically reduced 
as compared to conventional FEM.

• Numerical instability is avoided using multi-axial PML (M-PML)
• Thermal effects can be simulated
• “X-ACT” software can be used for the visualization of acoustic/electric fields at 

every point in the studied device, including visualization of the accumulated 
energy, power flows and the quantitative estimation of losses caused by the 
bulk wave radiation. 

• Conventional LSAW resonators suffer from both distributed BAW radiation from the entire
IDT range, and from concentrated BAW radiation from the IDT-reflector edge.  Electric 
discontinuity at the IDT–reflector transition range can contribute significantly to losses, 
especially at the antiresonance frequency, and in short resonators.
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