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But do the  bats and dolphins use LFM chirps?
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horizontal axis: time (0-2.5ms), 
vertical axis: frequency (0-70kHz) 

B*T*(K-1) >1 
(K- scaling factor)

LFM signal compression 
deteriorates significantly

No visible deterioration of 
compressed pulse



Purely geometric problem
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If the period of an array increases linearly with coordinate,
how can   the coordinate xn of n-th element of this array 

be calculated?
For the geometric structure of electrodes (strips, grooves, etc.) 
with period linearly changing with coordinate x
one can write the following relation:

𝑥𝑛+1 − 𝑥𝑛 = 𝑝0 + 𝜀 ∙ 𝑥𝑛

This formula  can be  treated 
as an equation  in integer numbers, 
which has unique solution:

𝑥𝑛 =
(1+𝜀)𝑛−1

𝜀
∙ 𝑝0



For algebra amateurs (1)
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Or, calculating the n-th period:
𝒑𝒏 = 𝒙𝒏+𝟏 − 𝒙𝒏 = (𝟏 + 𝜺)𝒏∙ 𝒑𝟎
Two parameters p0 and ε completely determine the array. 
If we fix the first period p0 and the last period  xN+1- xN =pend we can find that

𝜀 = (
𝑝𝑒𝑛𝑑

𝑝0
)
1

𝑁 − 1

and  re-write the formulas (2) and (3) in the following form:

𝑥𝑛 =
(
𝑝𝑒𝑛𝑑
𝑝0

)
𝑛
𝑁−1

(
𝑝𝑒𝑛𝑑
𝑝0

)
1
𝑁−1

∙ 𝑝0 ,  𝒑𝒏 = (
𝒑𝒆𝒏𝒅

𝒑𝟎
)
𝒏

𝑵∙ 𝒑𝟎



For algebra amateurs (2)
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If the total length L=xN of the structure is known   the number of periods N:

(
𝒑𝒆𝒏𝒅

𝒑𝟎
)
𝟏

𝑵 = 𝟏 +
𝒑𝒆𝒏𝒅−𝒑𝟎

𝑳
; 𝒙𝒏 = 𝑳 ∙

𝒑𝟎

𝒑𝒆𝒏𝒅−𝒑𝟎
∙ (

𝒑𝒆𝒏𝒅

𝒑𝟎
)
𝒏

𝑵 − 𝟏

If our structure corresponds to a SAW propagating with velocity V,
and the periods of the structure are related to frequency as 

𝑝0 =
𝑉

(𝐹0−
𝐵

2
)
, 𝑝𝑒𝑛𝑑 =

𝑉

(𝐹0+
𝐵

2
)

(here F0 is the centre frequency, |B|- the frequency band) ,   
introducing L= xN – total length,   for the case when there is 1 element per period (RACs):

𝒙𝒏 = −𝑳 ∙
𝑭𝟎+𝑩/𝟐

𝑩
∙ 𝟏 −

𝑩∙𝑽

𝑳∙ (𝑭𝟎
𝟐−

𝑩

𝟐

𝟐
)

𝒏

− 𝟏



Numeric simulations
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128°-LiNbO3

frequency range 200MHz-400MHz
The dispersive delay time T is equal to 0.5 μs, B*T product thus being B*T=100
P0=19.2 μm, pN=9.6 μm
N=279



Simulation results
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Red: ΔT=250 °C

Themain part of this response geometrically is not only similar, but identical to the initial response 



Compressed peaks
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HFM pulses

LFM case. Right curve compressed pulse 
at initial  temperature,
left curve – 2% expanded chirp.

LFM
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YZ-LiNbO3

F= 2000 MHz to 2500MHz,
p0=697.6 nm,  pN =872.0 nm
N=2231 grooves, for T=1000ns

𝐿 = 𝑉 ∗
𝑇

2
= 1744 𝜇𝑚

The coordinate of the grove reflector center
is non-linear function of its number, 

while the pitch of the grating is linear function 
of  the coordinate of reflecting element.



Reflectivity of the chirp grating
(no loss included)
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For ¦r¦=0.01 – reflection coefficient by a single groove
For YZ-LN  r=0.6*(h/λ); λ1.55m,  h  250Å

We have used Nfr=2001 frequency points, fr=[1800:0.5: 2800];

Using Inverse Fast Fourier Transform  (IFFT) 
we can get an impulse response



Hyberbolic Frequency Modulation
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For comparison:
– dotted  straight line

Linear increase of time  period 
(1/f); red line – ideal fitted 
straight line.
Polynomial fit is 

y=0.4001+0.1*t 
with the correct beginning 
period 0.4 ns= 1/ 2.5 GHz, 
end period  
0.5 ns = 1 /2.0 GHz, and 
expected rate coefficient (2.5-
2.0 )/1.0 =0.1.



Simulated compressed pulse
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The compressed pulse has form close
to sinx/x with the width around
1/500MHz = 2 ns. Its form (red line
shows real part of the signal) is
unique, and its position can be
determined without uncertainty of
phase (2 π). If in a sensor response
we will have 2 such pulses, by
correlation method we will find the
distance between this peaks.



Theoretical (ideal) HFM signal
used for compression of sensor response
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𝑇 𝑡 = 𝑇0 +
𝑇𝑁 − 𝑇0

𝑇
∗ 𝑡

Introducing phase 

Φ = 2𝜋 ∙  
0

𝑡 𝑑𝑡

𝑇 𝑡
= 2𝜋 ∙  

0

𝑡 𝑑𝑡

𝑇0 +
∆𝑇
𝑇 ∙ 𝑡

= 2𝜋 ∙
𝑇

∆𝑇
∙ 𝑙𝑛 1 +

∆𝑇

𝑇0
∙
𝑡

𝑇

 Φ = −2π ∙
𝑇

𝐵
∙ (𝐹0

2 −
𝐵

2

2

) ∙ lo g( 1 −
𝐵

𝐹0 +  𝐵 2
∙
𝑡

𝑇

𝑈 = 1 ∙ exp 1𝑖 ∙ Φ

The “compression gain” = 17.5 times, or about 25 dB, which 
close to ideal value about  10*log10(B*T) = 27 dB



SAW attenuation included
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6dB/ μs at 2GHz in LiNbO3

The “compression gain” using ideal HFM signal as 
refernce is about  14 times, or 23 dB



Experiments going on
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Profile groove etching

Uniform groove etching

Uniform etching, aperture weighted



Etching grooves
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Some grooves 
etched with defects

First samples manufactured

Reflected chirps (sample P5)

P5



Conclusions
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The Hyperbolically Frequency Modulated (HFM) signals and 
transducers/reflectors

are ideally suitable for SAW-sensors and SAW-tags, 
since compression of such signals, being temperature-invariant, 
can be achieved with always the same matched-to-signal filter, 

simplifying significantly the interrogation algorithm.

B*T*(K-1) >1 
(K- scaling factor)

LFM signal compression deteriorates significantly
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Thank you!


