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GaN for Future “Internet-of-Things” Devices 
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Image credit: General Electric 
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Harsh Environment Sensing 

•  “Harsh environment” includes extremes of pressure, temperature, 
shock, radiation and chemical attack. 

• Sensing within harsh environments enables real-time monitoring of 
subsurface environments, combustion and critical components.  
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Venus Exploration 
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Image Credit: NASA/JPL/Magellan Image Credit: Soviet/Venera 13 (1982) 

GaN Electronics for Venus Exploration via the NASA Hot Operating 
Temperature Technology “HOTTech” Program 

(Debbie G. Senesky, Mina Rais-Zadeh, Tomas Palacios, Yuji Zhao) 
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Material Properties (Gallium Nitride) 

Material properties of GaN, SiC, AlN, diamond and Si. 

 Property GaN 6H-SiC AlN  Diamond Silicon 

Melting Point (oC) 2500 2830  
sublimes 2470 4000 

phase change 1420 
Energy Gap (eV) 3.4 3.0 6.2 5.6 1.12 
Critical Field (×106 V/cm) 5.0 2.5 10 5.0 0.25 
Thermal Conductivity (W/cm-K) 1.3 5.0 1.6 20 1.5 
Young’s Modulus (GPa) 390 450 340 1035 190 
Acoustic Velocity (x103 m/s) 8.0 11.9 11.4 17.2 9.1 

Yield Strength (GPa) - 21 - 53 7 
Coeff. of Thermal Expansion (oC ×10-6 ) 3.7 4.5 4.0 0.8 2.6 
Chemical Stability Good Excellent Good Fair Fair 
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! GaN is a thermally stable, mechanically robust, ultraviolet sensitive  
and high breakdown semiconductor. 
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AlGaN/GaN 2DEG Formation 
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Image credit:  
http://en.wikipedia.org/wiki/Wurtzite_crystal_structure 

Image credit: M. Lindeborg et al., UCSB, 2011. Image credit: C. Chapin, Stanford University, 2015. 
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GaN High Electron Mobility Transistor (HEMT) 
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Image credit: Dr. Hans Stork, ON Semiconductor, 2018 
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GaN Everywhere… 

Power & RF LEDs  Sensing/IoT  

Solar Cells RF Resonators Nanostructures  

8 
…to realize the “more than Moore” diversification! 
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Extreme-Temp. (1000°C!) Operation of GaN 
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•  GaN heterostructures have 
demonstrated remarkable 
thermal stability 

•  Lattice-matched InAlN/GaN 
HEMTs have been shown to 
operate up to 1000°C in vacuum 
for 25+ hrs (Kohn et al., 2012) 

Image credit: Kohn et al., (2012) 

Gate current up to 1000°C  

Evolution of gate current at 1000°C  	

1000°C 
Chuck  

InAlN/GaN 
HEMT 

Image credit: NOVAGaN  
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GaN-on-Si “IoT” Sensing Platform 
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Pressure Sensor [1]  
(Chapin, 2017) 

UV Photodetector [2] 
(Satterthwaite & Yalamarthy, 2018) 

Hall-effect Sensor [3]  
(Dowling & Alpert, 2018) 

HEMT 

Thermoelectrics [4] 
(Yalamarthy, 2018) 

[1] C. Chapin,…D.G. Senesky, et al., Sensors and Actuators A: Physical (2017) 
[2] P. Satterthwaite, A. Yalamarthy,…D.G. Senesky, et al., ACS Photonics (2018) 
[3] H. Alpert, K. Dowling,…D.G. Senesky, et al., under review (2018) 
[4] A. Yalamarthy,…E. Pop, D.G. Senesky, et al., Advanced Functional Materials (2018) 
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“Tunable” Transport in AlGaN/GaN 2DEGs 
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•  Large, ~2.3X (room temperature) 
reduction in thermal conductivity for 
“thin” GaN in comparison to “bulk” 

•  Approximately identical electrical 
conductivities 

•  Ability for “tuning” thermal and 
electrical transport with film 
structure. 

A. Yalamarthy,…E. Pop, D.G. Senesky, et al., Advanced Functional Materials (2018)   
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On-chip GaN Thermoelectric “Hot Spot” Sensors 
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Suspended AlGaN/GaN film 
with four on-chip heaters (hot 
spots) and six  thermoelectric 

sensors 

Simulated 
Thermal 

Profile 

On-chip 
Heater 

GaN 
Sensor 

On-chip 
heater 

Image credit: http://hjwu.mse.nsysu.edu.tw 

A. Yalamarthy, E. Pop, D.G. Senesky, et al., Advanced Functional Materials (2018)   
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Stanford XLab Sensor Summary 
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Device/
Measurand 

Materials 
Platform 

Sensitivity/ 
Range 

Max. 
Temp* 

TRL 

Pressure InAlN/GaN-on-Si 0.64%/psig/  
0 to 28 psig  

300°C 2 

Heat flux (dT) AlGaN/GaN-on-Si 4 to 7x10-3 W/mK2 300°C 2 
Point Temperature 4H-SiC pn diode 3.5 mV/°C 600°C 3 
Magnetic Field/
Current 

AlGaN/GaN-on-Si ~76 mV/V/T 
-5 to 5 mT 

200°C 
 

3 

UV Photodetector  Graphene/GaN-
on-Sapphire 

2000 A/W 200°C 
 

2 

UV Photodetector  AlGaN/GaN-on-Si 
 

578 A/W 
NPDR = 7x1010 

300°C 3 

Micro-hotplate 
(Chem/Bio) 

AlGaN/GaN-on-Si 75 mW (heat from 
25°C to 270°C) 

600°C 2 

Principal Investigator: Prof. Debbie G. Senesky (dsenesky@stanford.edu) 

*Demonstrated in the XLab 
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High-temperature Contacts to GaN 
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•  Several contact metallization stacks to GaN, InAlN/GaN, and 
AlGaN/GaN have shown promise 

•  Formation of nitride alloys such as TiN formed at the 
interface are thought to cause Ohmic contact behavior 

•  XLab has shown contact resistance of Ti/Al/Pt/Au-GaN 
contacts were stable for 10 hrs at 600°C in air (Hou, 2014) 

•  Lowest reported Ohmic contact resistivities have been 
achieved through etch-back and regrowth of heavily doped 
n+ source and drain regions (Ganguly, 2014) 

 

Author, Year Ohmic 
Metallization 

ρ (Ω-cm2) 
 

Zhou, Chen, 2001 Ti/Al/Pt/Au 8.4 x 10-5 

Hu, Ding, 2006 Ti/Al/Pt/Au 1 x 10-5 

Hou, Senesky, 2014 *600C 
operation 

Ti/Al/Pt/Au 1 x 10-5 

Lee, Kou, 2000 Ti/Al/Pt/Au 7 x 10-6 

Selvanathan, Mohammed, 
2004 

Ti/Al/Mo/Au 3 x 10-7 

Yue, Xing, 2012 Regrown n+ 
regions 

Ti/Au 9.7 x 10-7 
 

Kumar, Selvanthan, Kuliev, 
2002 

Ti/Al/Mo/Au 4.7 x 10-7 

Ganguly, Jena et al., 2014 Regrown n+ 
regions 

Ti/Au 2.5 x 10-7 
 

Ganguly et al., 2014 

M. Hou et al., 2014 
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High-temperature Contacts to GaN 
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Ni/Au Schottky contacts to AlGaN/GaN exposed to 
600°C in XLab, formation of bubbles is thought to 
be from Ni/Au interdiffusion (A. Suria et al., 2017)  

Source contact metallization breakup 
induced failure in InAlN/GaN HEMT after 

23 hrs at 700°C (Kohn et al, 2012)  

•  Currently, reliability of GaN devices at high-temp 
is limited by contact integrity 

•  Common failure mechanisms include 
•  Au interdiffusion and Ga outdiffusion in 

Ohmic contacts 
•  Gate sinking above 400°C in Schottky 

contacts 
•  Rc dependence on metallization ratios and 

thicknesses + anneal time not well understood 
•  Further research is needed to lower contact 

resistivities and improve high-temp reliability 

Cross section of a Ti/Al/Mo/Au Ohmic contact stack on 
AlGaN showing the undesirable interdiffusion of Au 
and the formation of intermetallics after a 600°C anneal 
(Wang et al., 2007) 
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Ready, Set, Launch!  (Docked w/ISS!) 

GaN Sensor Payloads on the KickSat II Mission 

Payload w/ GaN Sensor 
(Stanford XLab) 

KickSat II cubesat 
passed shock and 
vibe! 

Credit: Prof. Zac 
Manchester 
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Irradiation (Gamma & Proton) Exposure 
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Proton Irradiation at Los  
Alamos National Laboratory 

Image credit: NASA 

Gamma Irradiation at  
JL Shephard in Pasadena, CA 
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Graphene/GaN UV Photodetectors 
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Light passes through 
exposed active area 
 

Photogenerated current 
under applied bias 

In the metal-semiconductor-metal 
(MSM) architecture, electrodes and 
semiconductors are typically 
considered back-to-back Schottky 
barriers 

Graphene 
Transparent 
Electrodes 
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SEM image of microfabricated 
graphene photodetector element 
on GaN thin film on sapphire.   

Graphene/GaN Under Proton Irradiation 
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1.) H. C. Chiamori et al., SPIE DSS, 2015. 
2.) R. Miller et al., Applied Physics Letters, 2017.   
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Graphene/GaN Under Proton Irradiation 

26 

R. Miller et al., Applied Physics Letters (2017)   
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GaN UV sensors for CubeSats 

CubeSat	Orienta-on	

Photodetector	Array	

Miniature	
Sun	Sensor	

1	cm	

1	cm	

250	μm	

R. Miller et al., Rev. Sci. Instrum. (2016) 27 
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Multifunctional Device Integration 

• Development of multiple devices (HEMT circuits, energy harvesters, 
sensors and RF resonators) on a single chip using the multi-
functional properties of the AlGaN/GaN heterostructure. 

GaN Sensor  
(e.g. acceleration, 
pressure) 

GaN 
Piezoelectric 
RF Resonator 

GaN 
Piezoelectric 

Energy 
Harvester 

GaN High 
Electron 
Mobility 

Transistor 
(HEMT) Circuit 

28 
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Extreme-environment GaN Electronics 
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Tsao, J. Y. et al., Advanced Electronic Materials (2017) 

“Akash's patented GaN-on-
Diamond technology is designed 
to make satellites smaller, lighter 
and higher performing….” 

Radiation-rich Environments High-temperature Operation 
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Thank You! 
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xlab.stanford.edu 
dsenesky@stanford.edu 

Instagram & Twitter: @debbiesenesky 




